Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM
Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.594-603 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 1 |
container_start_page | 594 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | Wei, Songlin Chen, Guodong Chi, Wenzheng Wang, Zhenhua Sun, Lining |
description | Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs. |
doi_str_mv | 10.1109/TIE.2022.3146553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2022_3146553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9700775</ieee_id><sourcerecordid>2706891795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJdpM0x9LWD2ipYMWTLGl21qasm5pkQf-9Wyqe5jDP-87wEHLNYMQY6Lv103zEgfNRzgopRH5CBkwIlWldjE_JALgaZwCFPCcXMe4AWCGYGJD31WaHNtFp08WEwbUf9M2lLZ254Oy2wUSfg7cYI12679QFpEtfYUNrH-jMJEMnMXrrTHK-pa7tt623XWMCfVlMlpfkrDZNxKu_OSSv9_P19DFbrB6eppNFZrlmKdsUtpK8MmNhEaGA_n1d14YLxhlUUhfGooINQ6lYVYg6z2VlhUbkBjWXMh-S22PvPvivDmMqd74LbX-y5ArkWDOlRU_BkbLBxxiwLvfBfZrwUzIoDxLLXmJ5kFj-SewjN8eIQ8R_XCsApUT-CyZibQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706891795</pqid></control><display><type>article</type><title>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Songlin ; Chen, Guodong ; Chi, Wenzheng ; Wang, Zhenhua ; Sun, Lining</creator><creatorcontrib>Wei, Songlin ; Chen, Guodong ; Chi, Wenzheng ; Wang, Zhenhua ; Sun, Lining</creatorcontrib><description>Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3146553</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Clustering ; Cuboid object detection ; data association ; Detectors ; Dirichlet problem ; Mixtures ; monocular SLAM ; Object detection ; Pose estimation ; Q measurement ; semantic SLAM ; Semantics ; Simultaneous localization and mapping ; Three-dimensional displays</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.594-603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</citedby><cites>FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</cites><orcidid>0000-0002-8121-2624 ; 0000-0002-4835-708X ; 0000-0002-5241-5828 ; 0000-0002-1487-1494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9700775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9700775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Songlin</creatorcontrib><creatorcontrib>Chen, Guodong</creatorcontrib><creatorcontrib>Chi, Wenzheng</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><title>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.</description><subject>Cameras</subject><subject>Clustering</subject><subject>Cuboid object detection</subject><subject>data association</subject><subject>Detectors</subject><subject>Dirichlet problem</subject><subject>Mixtures</subject><subject>monocular SLAM</subject><subject>Object detection</subject><subject>Pose estimation</subject><subject>Q measurement</subject><subject>semantic SLAM</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Three-dimensional displays</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJdpM0x9LWD2ipYMWTLGl21qasm5pkQf-9Wyqe5jDP-87wEHLNYMQY6Lv103zEgfNRzgopRH5CBkwIlWldjE_JALgaZwCFPCcXMe4AWCGYGJD31WaHNtFp08WEwbUf9M2lLZ254Oy2wUSfg7cYI12679QFpEtfYUNrH-jMJEMnMXrrTHK-pa7tt623XWMCfVlMlpfkrDZNxKu_OSSv9_P19DFbrB6eppNFZrlmKdsUtpK8MmNhEaGA_n1d14YLxhlUUhfGooINQ6lYVYg6z2VlhUbkBjWXMh-S22PvPvivDmMqd74LbX-y5ArkWDOlRU_BkbLBxxiwLvfBfZrwUzIoDxLLXmJ5kFj-SewjN8eIQ8R_XCsApUT-CyZibQ8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wei, Songlin</creator><creator>Chen, Guodong</creator><creator>Chi, Wenzheng</creator><creator>Wang, Zhenhua</creator><creator>Sun, Lining</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8121-2624</orcidid><orcidid>https://orcid.org/0000-0002-4835-708X</orcidid><orcidid>https://orcid.org/0000-0002-5241-5828</orcidid><orcidid>https://orcid.org/0000-0002-1487-1494</orcidid></search><sort><creationdate>20230101</creationdate><title>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</title><author>Wei, Songlin ; Chen, Guodong ; Chi, Wenzheng ; Wang, Zhenhua ; Sun, Lining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Clustering</topic><topic>Cuboid object detection</topic><topic>data association</topic><topic>Detectors</topic><topic>Dirichlet problem</topic><topic>Mixtures</topic><topic>monocular SLAM</topic><topic>Object detection</topic><topic>Pose estimation</topic><topic>Q measurement</topic><topic>semantic SLAM</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Songlin</creatorcontrib><creatorcontrib>Chen, Guodong</creatorcontrib><creatorcontrib>Chi, Wenzheng</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Songlin</au><au>Chen, Guodong</au><au>Chi, Wenzheng</au><au>Wang, Zhenhua</au><au>Sun, Lining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>594</spage><epage>603</epage><pages>594-603</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3146553</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8121-2624</orcidid><orcidid>https://orcid.org/0000-0002-4835-708X</orcidid><orcidid>https://orcid.org/0000-0002-5241-5828</orcidid><orcidid>https://orcid.org/0000-0002-1487-1494</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.594-603 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2022_3146553 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Clustering Cuboid object detection data association Detectors Dirichlet problem Mixtures monocular SLAM Object detection Pose estimation Q measurement semantic SLAM Semantics Simultaneous localization and mapping Three-dimensional displays |
title | Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Clustering%20With%20Dirichlet%20Process%20Mixture%20Model%20for%20Data%20Association%20in%20Monocular%20SLAM&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wei,%20Songlin&rft.date=2023-01-01&rft.volume=70&rft.issue=1&rft.spage=594&rft.epage=603&rft.pages=594-603&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3146553&rft_dat=%3Cproquest_RIE%3E2706891795%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706891795&rft_id=info:pmid/&rft_ieee_id=9700775&rfr_iscdi=true |