Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM

Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.594-603
Hauptverfasser: Wei, Songlin, Chen, Guodong, Chi, Wenzheng, Wang, Zhenhua, Sun, Lining
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 1
container_start_page 594
container_title IEEE transactions on industrial electronics (1982)
container_volume 70
creator Wei, Songlin
Chen, Guodong
Chi, Wenzheng
Wang, Zhenhua
Sun, Lining
description Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.
doi_str_mv 10.1109/TIE.2022.3146553
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2022_3146553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9700775</ieee_id><sourcerecordid>2706891795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJdpM0x9LWD2ipYMWTLGl21qasm5pkQf-9Wyqe5jDP-87wEHLNYMQY6Lv103zEgfNRzgopRH5CBkwIlWldjE_JALgaZwCFPCcXMe4AWCGYGJD31WaHNtFp08WEwbUf9M2lLZ254Oy2wUSfg7cYI12679QFpEtfYUNrH-jMJEMnMXrrTHK-pa7tt623XWMCfVlMlpfkrDZNxKu_OSSv9_P19DFbrB6eppNFZrlmKdsUtpK8MmNhEaGA_n1d14YLxhlUUhfGooINQ6lYVYg6z2VlhUbkBjWXMh-S22PvPvivDmMqd74LbX-y5ArkWDOlRU_BkbLBxxiwLvfBfZrwUzIoDxLLXmJ5kFj-SewjN8eIQ8R_XCsApUT-CyZibQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706891795</pqid></control><display><type>article</type><title>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Songlin ; Chen, Guodong ; Chi, Wenzheng ; Wang, Zhenhua ; Sun, Lining</creator><creatorcontrib>Wei, Songlin ; Chen, Guodong ; Chi, Wenzheng ; Wang, Zhenhua ; Sun, Lining</creatorcontrib><description>Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3146553</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Clustering ; Cuboid object detection ; data association ; Detectors ; Dirichlet problem ; Mixtures ; monocular SLAM ; Object detection ; Pose estimation ; Q measurement ; semantic SLAM ; Semantics ; Simultaneous localization and mapping ; Three-dimensional displays</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.594-603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</citedby><cites>FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</cites><orcidid>0000-0002-8121-2624 ; 0000-0002-4835-708X ; 0000-0002-5241-5828 ; 0000-0002-1487-1494</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9700775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9700775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Songlin</creatorcontrib><creatorcontrib>Chen, Guodong</creatorcontrib><creatorcontrib>Chi, Wenzheng</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><title>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.</description><subject>Cameras</subject><subject>Clustering</subject><subject>Cuboid object detection</subject><subject>data association</subject><subject>Detectors</subject><subject>Dirichlet problem</subject><subject>Mixtures</subject><subject>monocular SLAM</subject><subject>Object detection</subject><subject>Pose estimation</subject><subject>Q measurement</subject><subject>semantic SLAM</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Three-dimensional displays</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJdpM0x9LWD2ipYMWTLGl21qasm5pkQf-9Wyqe5jDP-87wEHLNYMQY6Lv103zEgfNRzgopRH5CBkwIlWldjE_JALgaZwCFPCcXMe4AWCGYGJD31WaHNtFp08WEwbUf9M2lLZ254Oy2wUSfg7cYI12679QFpEtfYUNrH-jMJEMnMXrrTHK-pa7tt623XWMCfVlMlpfkrDZNxKu_OSSv9_P19DFbrB6eppNFZrlmKdsUtpK8MmNhEaGA_n1d14YLxhlUUhfGooINQ6lYVYg6z2VlhUbkBjWXMh-S22PvPvivDmMqd74LbX-y5ArkWDOlRU_BkbLBxxiwLvfBfZrwUzIoDxLLXmJ5kFj-SewjN8eIQ8R_XCsApUT-CyZibQ8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wei, Songlin</creator><creator>Chen, Guodong</creator><creator>Chi, Wenzheng</creator><creator>Wang, Zhenhua</creator><creator>Sun, Lining</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8121-2624</orcidid><orcidid>https://orcid.org/0000-0002-4835-708X</orcidid><orcidid>https://orcid.org/0000-0002-5241-5828</orcidid><orcidid>https://orcid.org/0000-0002-1487-1494</orcidid></search><sort><creationdate>20230101</creationdate><title>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</title><author>Wei, Songlin ; Chen, Guodong ; Chi, Wenzheng ; Wang, Zhenhua ; Sun, Lining</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b4cd62da85cee0405539ffa251210d694ace70b1e671d45f336dc59ee2ae92663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Clustering</topic><topic>Cuboid object detection</topic><topic>data association</topic><topic>Detectors</topic><topic>Dirichlet problem</topic><topic>Mixtures</topic><topic>monocular SLAM</topic><topic>Object detection</topic><topic>Pose estimation</topic><topic>Q measurement</topic><topic>semantic SLAM</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Songlin</creatorcontrib><creatorcontrib>Chen, Guodong</creatorcontrib><creatorcontrib>Chi, Wenzheng</creatorcontrib><creatorcontrib>Wang, Zhenhua</creatorcontrib><creatorcontrib>Sun, Lining</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Songlin</au><au>Chen, Guodong</au><au>Chi, Wenzheng</au><au>Wang, Zhenhua</au><au>Sun, Lining</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>594</spage><epage>603</epage><pages>594-603</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Semantic simultaneous localization and mapping (SLAM) with a monocular camera is particularly attractive because of the deployment simplicity and economic availability. Data association problem which assigns unique identities for objects shown in multiple frames plays a fundamental role in semantic SLAM. Previous prevalent methods which mainly focused on associating geometric KeyPoints are no longer suitable. Some naive methods that rely on object distance or 2-D/3-D Intersection over Union are also vulnerable when occlusions happen. In this article, we propose a novel data association method for cuboid landmarks based on Dirichlet process mixture model. By jointly considering object class, position, and size, our method can perform data association robustly. We evaluated our method in simulated datasets, public benchmark KITTI, and on a real robot in an office environment. Experimental results show that our method not only associates cuboids robustly but also achieves SOTA pose estimation accuracy in monocular SLAMs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3146553</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8121-2624</orcidid><orcidid>https://orcid.org/0000-0002-4835-708X</orcidid><orcidid>https://orcid.org/0000-0002-5241-5828</orcidid><orcidid>https://orcid.org/0000-0002-1487-1494</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.594-603
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2022_3146553
source IEEE Electronic Library (IEL)
subjects Cameras
Clustering
Cuboid object detection
data association
Detectors
Dirichlet problem
Mixtures
monocular SLAM
Object detection
Pose estimation
Q measurement
semantic SLAM
Semantics
Simultaneous localization and mapping
Three-dimensional displays
title Object Clustering With Dirichlet Process Mixture Model for Data Association in Monocular SLAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object%20Clustering%20With%20Dirichlet%20Process%20Mixture%20Model%20for%20Data%20Association%20in%20Monocular%20SLAM&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wei,%20Songlin&rft.date=2023-01-01&rft.volume=70&rft.issue=1&rft.spage=594&rft.epage=603&rft.pages=594-603&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3146553&rft_dat=%3Cproquest_RIE%3E2706891795%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706891795&rft_id=info:pmid/&rft_ieee_id=9700775&rfr_iscdi=true