Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover
This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a dece...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2022-01, Vol.69 (1), p.592-603 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 603 |
---|---|
container_issue | 1 |
container_start_page | 592 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 69 |
creator | Yu, Haitao Gao, Haibo Deng, Huichao Yuan, Shuai Zhang, Lixian |
description | This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation. |
doi_str_mv | 10.1109/TIE.2021.3050366 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2021_3050366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9324989</ieee_id><sourcerecordid>2579439730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSlzTNcQ6ng4GilR1L2qYuo2tq0g0m_vF2dHh6h9_3e-_xIXRLyYRSoh7SxdOEEUYnQASBOD5DIyqEjJTiyTkaESaTiBAeX6KrEDaEUC6oGKHfj0NTrL1r7I_urGvwzDWddzVe2W6Np6VuO7s3eO5tcYq3rWnCwLoKp97ocmvrOnrUwZQ4NaGzzReetq32utsFXDmPV2tj6j59q3VjOu0P-N3tjb9GF5Wug7k5zTH6nD-ls5do-fq8mE2XUcEU7SLBKwUAFZMSeMy1ACbyREsDpWYUZMFoXCQkYSqneW4UFHElaQK8YkBlrGCM7oe9rXffu_7DbON2vulPZkxIxUFJID1FBqrwLgRvqqz1dts_m1GSHR1nvePs6Dg7Oe4rd0PFGmP-cQWMq0TBHx6ueHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579439730</pqid></control><display><type>article</type><title>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Haitao ; Gao, Haibo ; Deng, Huichao ; Yuan, Shuai ; Zhang, Lixian</creator><creatorcontrib>Yu, Haitao ; Gao, Haibo ; Deng, Huichao ; Yuan, Shuai ; Zhang, Lixian</creatorcontrib><description>This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2021.3050366</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Adaptive friction compensation ; Coders ; Compensation ; Control stability ; Controllers ; Feedback control ; Friction ; Low speed ; LuGre model ; mobile robot ; Parameter identification ; Robot kinematics ; Robots ; Synchronism ; Synchronization ; synchronization control ; Test equipment ; Testing ; Tracking errors ; Treadmills ; Uncertainty ; wheeled planetary rover (WPR) ; Wheels</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022-01, Vol.69 (1), p.592-603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</citedby><cites>FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</cites><orcidid>0000-0002-6501-656X ; 0000-0003-4428-3965 ; 0000-0002-7948-6052 ; 0000-0002-9777-7523 ; 0000-0002-1304-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9324989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9324989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><creatorcontrib>Deng, Huichao</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Zhang, Lixian</creatorcontrib><title>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Adaptive friction compensation</subject><subject>Coders</subject><subject>Compensation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Feedback control</subject><subject>Friction</subject><subject>Low speed</subject><subject>LuGre model</subject><subject>mobile robot</subject><subject>Parameter identification</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>synchronization control</subject><subject>Test equipment</subject><subject>Testing</subject><subject>Tracking errors</subject><subject>Treadmills</subject><subject>Uncertainty</subject><subject>wheeled planetary rover (WPR)</subject><subject>Wheels</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSlzTNcQ6ng4GilR1L2qYuo2tq0g0m_vF2dHh6h9_3e-_xIXRLyYRSoh7SxdOEEUYnQASBOD5DIyqEjJTiyTkaESaTiBAeX6KrEDaEUC6oGKHfj0NTrL1r7I_urGvwzDWddzVe2W6Np6VuO7s3eO5tcYq3rWnCwLoKp97ocmvrOnrUwZQ4NaGzzReetq32utsFXDmPV2tj6j59q3VjOu0P-N3tjb9GF5Wug7k5zTH6nD-ls5do-fq8mE2XUcEU7SLBKwUAFZMSeMy1ACbyREsDpWYUZMFoXCQkYSqneW4UFHElaQK8YkBlrGCM7oe9rXffu_7DbON2vulPZkxIxUFJID1FBqrwLgRvqqz1dts_m1GSHR1nvePs6Dg7Oe4rd0PFGmP-cQWMq0TBHx6ueHc</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Yu, Haitao</creator><creator>Gao, Haibo</creator><creator>Deng, Huichao</creator><creator>Yuan, Shuai</creator><creator>Zhang, Lixian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6501-656X</orcidid><orcidid>https://orcid.org/0000-0003-4428-3965</orcidid><orcidid>https://orcid.org/0000-0002-7948-6052</orcidid><orcidid>https://orcid.org/0000-0002-9777-7523</orcidid><orcidid>https://orcid.org/0000-0002-1304-3988</orcidid></search><sort><creationdate>202201</creationdate><title>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</title><author>Yu, Haitao ; Gao, Haibo ; Deng, Huichao ; Yuan, Shuai ; Zhang, Lixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Adaptive friction compensation</topic><topic>Coders</topic><topic>Compensation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Feedback control</topic><topic>Friction</topic><topic>Low speed</topic><topic>LuGre model</topic><topic>mobile robot</topic><topic>Parameter identification</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>synchronization control</topic><topic>Test equipment</topic><topic>Testing</topic><topic>Tracking errors</topic><topic>Treadmills</topic><topic>Uncertainty</topic><topic>wheeled planetary rover (WPR)</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><creatorcontrib>Deng, Huichao</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Zhang, Lixian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Haitao</au><au>Gao, Haibo</au><au>Deng, Huichao</au><au>Yuan, Shuai</au><au>Zhang, Lixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>592</spage><epage>603</epage><pages>592-603</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2021.3050366</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6501-656X</orcidid><orcidid>https://orcid.org/0000-0003-4428-3965</orcidid><orcidid>https://orcid.org/0000-0002-7948-6052</orcidid><orcidid>https://orcid.org/0000-0002-9777-7523</orcidid><orcidid>https://orcid.org/0000-0002-1304-3988</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2022-01, Vol.69 (1), p.592-603 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2021_3050366 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive control Adaptive friction compensation Coders Compensation Control stability Controllers Feedback control Friction Low speed LuGre model mobile robot Parameter identification Robot kinematics Robots Synchronism Synchronization synchronization control Test equipment Testing Tracking errors Treadmills Uncertainty wheeled planetary rover (WPR) Wheels |
title | Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20Control%20With%20Adaptive%20Friction%20Compensation%20of%20Treadmill-Based%20Testing%20Apparatus%20for%20Wheeled%20Planetary%20Rover&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Yu,%20Haitao&rft.date=2022-01&rft.volume=69&rft.issue=1&rft.spage=592&rft.epage=603&rft.pages=592-603&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2021.3050366&rft_dat=%3Cproquest_RIE%3E2579439730%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579439730&rft_id=info:pmid/&rft_ieee_id=9324989&rfr_iscdi=true |