Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover

This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a dece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-01, Vol.69 (1), p.592-603
Hauptverfasser: Yu, Haitao, Gao, Haibo, Deng, Huichao, Yuan, Shuai, Zhang, Lixian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 603
container_issue 1
container_start_page 592
container_title IEEE transactions on industrial electronics (1982)
container_volume 69
creator Yu, Haitao
Gao, Haibo
Deng, Huichao
Yuan, Shuai
Zhang, Lixian
description This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.
doi_str_mv 10.1109/TIE.2021.3050366
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2021_3050366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9324989</ieee_id><sourcerecordid>2579439730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSlzTNcQ6ng4GilR1L2qYuo2tq0g0m_vF2dHh6h9_3e-_xIXRLyYRSoh7SxdOEEUYnQASBOD5DIyqEjJTiyTkaESaTiBAeX6KrEDaEUC6oGKHfj0NTrL1r7I_urGvwzDWddzVe2W6Np6VuO7s3eO5tcYq3rWnCwLoKp97ocmvrOnrUwZQ4NaGzzReetq32utsFXDmPV2tj6j59q3VjOu0P-N3tjb9GF5Wug7k5zTH6nD-ls5do-fq8mE2XUcEU7SLBKwUAFZMSeMy1ACbyREsDpWYUZMFoXCQkYSqneW4UFHElaQK8YkBlrGCM7oe9rXffu_7DbON2vulPZkxIxUFJID1FBqrwLgRvqqz1dts_m1GSHR1nvePs6Dg7Oe4rd0PFGmP-cQWMq0TBHx6ueHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579439730</pqid></control><display><type>article</type><title>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Haitao ; Gao, Haibo ; Deng, Huichao ; Yuan, Shuai ; Zhang, Lixian</creator><creatorcontrib>Yu, Haitao ; Gao, Haibo ; Deng, Huichao ; Yuan, Shuai ; Zhang, Lixian</creatorcontrib><description>This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2021.3050366</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Adaptive friction compensation ; Coders ; Compensation ; Control stability ; Controllers ; Feedback control ; Friction ; Low speed ; LuGre model ; mobile robot ; Parameter identification ; Robot kinematics ; Robots ; Synchronism ; Synchronization ; synchronization control ; Test equipment ; Testing ; Tracking errors ; Treadmills ; Uncertainty ; wheeled planetary rover (WPR) ; Wheels</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022-01, Vol.69 (1), p.592-603</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</citedby><cites>FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</cites><orcidid>0000-0002-6501-656X ; 0000-0003-4428-3965 ; 0000-0002-7948-6052 ; 0000-0002-9777-7523 ; 0000-0002-1304-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9324989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9324989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><creatorcontrib>Deng, Huichao</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Zhang, Lixian</creatorcontrib><title>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Adaptive friction compensation</subject><subject>Coders</subject><subject>Compensation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Feedback control</subject><subject>Friction</subject><subject>Low speed</subject><subject>LuGre model</subject><subject>mobile robot</subject><subject>Parameter identification</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>synchronization control</subject><subject>Test equipment</subject><subject>Testing</subject><subject>Tracking errors</subject><subject>Treadmills</subject><subject>Uncertainty</subject><subject>wheeled planetary rover (WPR)</subject><subject>Wheels</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSlzTNcQ6ng4GilR1L2qYuo2tq0g0m_vF2dHh6h9_3e-_xIXRLyYRSoh7SxdOEEUYnQASBOD5DIyqEjJTiyTkaESaTiBAeX6KrEDaEUC6oGKHfj0NTrL1r7I_urGvwzDWddzVe2W6Np6VuO7s3eO5tcYq3rWnCwLoKp97ocmvrOnrUwZQ4NaGzzReetq32utsFXDmPV2tj6j59q3VjOu0P-N3tjb9GF5Wug7k5zTH6nD-ls5do-fq8mE2XUcEU7SLBKwUAFZMSeMy1ACbyREsDpWYUZMFoXCQkYSqneW4UFHElaQK8YkBlrGCM7oe9rXffu_7DbON2vulPZkxIxUFJID1FBqrwLgRvqqz1dts_m1GSHR1nvePs6Dg7Oe4rd0PFGmP-cQWMq0TBHx6ueHc</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Yu, Haitao</creator><creator>Gao, Haibo</creator><creator>Deng, Huichao</creator><creator>Yuan, Shuai</creator><creator>Zhang, Lixian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6501-656X</orcidid><orcidid>https://orcid.org/0000-0003-4428-3965</orcidid><orcidid>https://orcid.org/0000-0002-7948-6052</orcidid><orcidid>https://orcid.org/0000-0002-9777-7523</orcidid><orcidid>https://orcid.org/0000-0002-1304-3988</orcidid></search><sort><creationdate>202201</creationdate><title>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</title><author>Yu, Haitao ; Gao, Haibo ; Deng, Huichao ; Yuan, Shuai ; Zhang, Lixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-54f9333f2773464a5325b8a7e3da2137c216c80829b1bbe93c6f71834f2317693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Adaptive friction compensation</topic><topic>Coders</topic><topic>Compensation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Feedback control</topic><topic>Friction</topic><topic>Low speed</topic><topic>LuGre model</topic><topic>mobile robot</topic><topic>Parameter identification</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>synchronization control</topic><topic>Test equipment</topic><topic>Testing</topic><topic>Tracking errors</topic><topic>Treadmills</topic><topic>Uncertainty</topic><topic>wheeled planetary rover (WPR)</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haitao</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><creatorcontrib>Deng, Huichao</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Zhang, Lixian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Haitao</au><au>Gao, Haibo</au><au>Deng, Huichao</au><au>Yuan, Shuai</au><au>Zhang, Lixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>592</spage><epage>603</epage><pages>592-603</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article studies synchronization control of a novel devised treadmill-based testing apparatus for wheeled planetary rover roaming at low speed. To offer satisfactory tracking performance and to ameliorate internal conflicts amongst individual treadmills during rover-treadmill interaction, a decentralized synchronization control strategy integrating an adaptive friction compensation scheme is proposed. To overcome the nonlinear friction effect at low-velocity scenarios, the LuGre model based friction compensation scheme is constructed with a dual-observer structure that can handle parametric uncertainties without recourse to the high-resolution encoder-required parameter identification. With the proposed control design, asymptotic stability of the closed-loop system is guaranteed with the tracking error and synchronization error converging to zero in presence of parametric uncertainties. Experimental results demonstrate the effectiveness of the proposed control strategy, which significantly improves the tracking performance in comparison with the existing proportional differential (PD)-type controller and synchronization controller without friction compensation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2021.3050366</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6501-656X</orcidid><orcidid>https://orcid.org/0000-0003-4428-3965</orcidid><orcidid>https://orcid.org/0000-0002-7948-6052</orcidid><orcidid>https://orcid.org/0000-0002-9777-7523</orcidid><orcidid>https://orcid.org/0000-0002-1304-3988</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2022-01, Vol.69 (1), p.592-603
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2021_3050366
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Adaptive friction compensation
Coders
Compensation
Control stability
Controllers
Feedback control
Friction
Low speed
LuGre model
mobile robot
Parameter identification
Robot kinematics
Robots
Synchronism
Synchronization
synchronization control
Test equipment
Testing
Tracking errors
Treadmills
Uncertainty
wheeled planetary rover (WPR)
Wheels
title Synchronization Control With Adaptive Friction Compensation of Treadmill-Based Testing Apparatus for Wheeled Planetary Rover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20Control%20With%20Adaptive%20Friction%20Compensation%20of%20Treadmill-Based%20Testing%20Apparatus%20for%20Wheeled%20Planetary%20Rover&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Yu,%20Haitao&rft.date=2022-01&rft.volume=69&rft.issue=1&rft.spage=592&rft.epage=603&rft.pages=592-603&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2021.3050366&rft_dat=%3Cproquest_RIE%3E2579439730%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579439730&rft_id=info:pmid/&rft_ieee_id=9324989&rfr_iscdi=true