A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System

A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-12, Vol.68 (12), p.12385-12395
Hauptverfasser: Nirmal Mukundan, C. M., Naqvi, Syed Bilal Qaiser, Singh, Yashi, Singh, Bhim, Jayaprakash, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12395
container_issue 12
container_start_page 12385
container_title IEEE transactions on industrial electronics (1982)
container_volume 68
creator Nirmal Mukundan, C. M.
Naqvi, Syed Bilal Qaiser
Singh, Yashi
Singh, Bhim
Jayaprakash, P.
description A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.
doi_str_mv 10.1109/TIE.2020.3048316
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2020_3048316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316881</ieee_id><sourcerecordid>2568064769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</originalsourceid><addsrcrecordid>eNo9kM9rwjAUx8PYYM7tPtglsHNd0iZNcpTinODYQXcOafIqldq4pA7cX29E2em9x_fHgw9Cz5RMKCXqbb2YTXKSk0lBmCxoeYNGlHORKcXkLRqRXMiMEFbeo4cYt4RQxikfoWaKKxOtceDwHHoIpmv_0r7oB9ikA1e-H4LvcOMD_jx0Q-vrLdih_QU8D63Lkt6nO0VWvjMBz1LH5ojXwfSxgYBXxzjA7hHdNaaL8HSdY_T9PltXH9nya76opsvM5ooOmTDgbEEkr2kJrmaF4dbUeV640kohwRgpwSmlnGlqxphiteC1FVYJZ6zjxRi9Xnr3wf8cIA566w-hTy91zktJSiZKlVzk4rLBxxig0fvQ7kw4akr0maZONPWZpr7STJGXS6QFgH-7SpKUtDgBzSVyHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568064769</pqid></control><display><type>article</type><title>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</title><source>IEEE Electronic Library (IEL)</source><creator>Nirmal Mukundan, C. M. ; Naqvi, Syed Bilal Qaiser ; Singh, Yashi ; Singh, Bhim ; Jayaprakash, P.</creator><creatorcontrib>Nirmal Mukundan, C. M. ; Naqvi, Syed Bilal Qaiser ; Singh, Yashi ; Singh, Bhim ; Jayaprakash, P.</creatorcontrib><description>A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.3048316</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Band-pass filters ; Control algorithms ; Control theory ; Converters ; Energy transfer ; Generalized integral ; Harmonic analysis ; Harmonic reduction ; Harmonics ; Incremental conductance ; Integrals ; Irradiance ; Maximum power ; Maximum power point trackers ; Multiple objective analysis ; Phase distribution ; photovoltaic (PV) array ; Photovoltaic cells ; power quality ; Reactive power ; Rejection ; Solar energy ; Steady-state ; Tuning</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-12, Vol.68 (12), p.12385-12395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</citedby><cites>FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</cites><orcidid>0000-0001-9058-2232 ; 0000-0002-4705-2970 ; 0000-0003-1378-509X ; 0000-0003-4759-7484 ; 0000-0003-0320-6509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nirmal Mukundan, C. M.</creatorcontrib><creatorcontrib>Naqvi, Syed Bilal Qaiser</creatorcontrib><creatorcontrib>Singh, Yashi</creatorcontrib><creatorcontrib>Singh, Bhim</creatorcontrib><creatorcontrib>Jayaprakash, P.</creatorcontrib><title>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Band-pass filters</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Converters</subject><subject>Energy transfer</subject><subject>Generalized integral</subject><subject>Harmonic analysis</subject><subject>Harmonic reduction</subject><subject>Harmonics</subject><subject>Incremental conductance</subject><subject>Integrals</subject><subject>Irradiance</subject><subject>Maximum power</subject><subject>Maximum power point trackers</subject><subject>Multiple objective analysis</subject><subject>Phase distribution</subject><subject>photovoltaic (PV) array</subject><subject>Photovoltaic cells</subject><subject>power quality</subject><subject>Reactive power</subject><subject>Rejection</subject><subject>Solar energy</subject><subject>Steady-state</subject><subject>Tuning</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9rwjAUx8PYYM7tPtglsHNd0iZNcpTinODYQXcOafIqldq4pA7cX29E2em9x_fHgw9Cz5RMKCXqbb2YTXKSk0lBmCxoeYNGlHORKcXkLRqRXMiMEFbeo4cYt4RQxikfoWaKKxOtceDwHHoIpmv_0r7oB9ikA1e-H4LvcOMD_jx0Q-vrLdih_QU8D63Lkt6nO0VWvjMBz1LH5ojXwfSxgYBXxzjA7hHdNaaL8HSdY_T9PltXH9nya76opsvM5ooOmTDgbEEkr2kJrmaF4dbUeV640kohwRgpwSmlnGlqxphiteC1FVYJZ6zjxRi9Xnr3wf8cIA566w-hTy91zktJSiZKlVzk4rLBxxig0fvQ7kw4akr0maZONPWZpr7STJGXS6QFgH-7SpKUtDgBzSVyHA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nirmal Mukundan, C. M.</creator><creator>Naqvi, Syed Bilal Qaiser</creator><creator>Singh, Yashi</creator><creator>Singh, Bhim</creator><creator>Jayaprakash, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9058-2232</orcidid><orcidid>https://orcid.org/0000-0002-4705-2970</orcidid><orcidid>https://orcid.org/0000-0003-1378-509X</orcidid><orcidid>https://orcid.org/0000-0003-4759-7484</orcidid><orcidid>https://orcid.org/0000-0003-0320-6509</orcidid></search><sort><creationdate>20211201</creationdate><title>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</title><author>Nirmal Mukundan, C. M. ; Naqvi, Syed Bilal Qaiser ; Singh, Yashi ; Singh, Bhim ; Jayaprakash, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Band-pass filters</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Converters</topic><topic>Energy transfer</topic><topic>Generalized integral</topic><topic>Harmonic analysis</topic><topic>Harmonic reduction</topic><topic>Harmonics</topic><topic>Incremental conductance</topic><topic>Integrals</topic><topic>Irradiance</topic><topic>Maximum power</topic><topic>Maximum power point trackers</topic><topic>Multiple objective analysis</topic><topic>Phase distribution</topic><topic>photovoltaic (PV) array</topic><topic>Photovoltaic cells</topic><topic>power quality</topic><topic>Reactive power</topic><topic>Rejection</topic><topic>Solar energy</topic><topic>Steady-state</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nirmal Mukundan, C. M.</creatorcontrib><creatorcontrib>Naqvi, Syed Bilal Qaiser</creatorcontrib><creatorcontrib>Singh, Yashi</creatorcontrib><creatorcontrib>Singh, Bhim</creatorcontrib><creatorcontrib>Jayaprakash, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nirmal Mukundan, C. M.</au><au>Naqvi, Syed Bilal Qaiser</au><au>Singh, Yashi</au><au>Singh, Bhim</au><au>Jayaprakash, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>12385</spage><epage>12395</epage><pages>12385-12395</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.3048316</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9058-2232</orcidid><orcidid>https://orcid.org/0000-0002-4705-2970</orcidid><orcidid>https://orcid.org/0000-0003-1378-509X</orcidid><orcidid>https://orcid.org/0000-0003-4759-7484</orcidid><orcidid>https://orcid.org/0000-0003-0320-6509</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2021-12, Vol.68 (12), p.12385-12395
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2020_3048316
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrays
Band-pass filters
Control algorithms
Control theory
Converters
Energy transfer
Generalized integral
Harmonic analysis
Harmonic reduction
Harmonics
Incremental conductance
Integrals
Irradiance
Maximum power
Maximum power point trackers
Multiple objective analysis
Phase distribution
photovoltaic (PV) array
Photovoltaic cells
power quality
Reactive power
Rejection
Solar energy
Steady-state
Tuning
title A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cascaded%20Generalized%20Integral%20Control%20for%20Multiobjective%20Grid-Connected%20Solar%20Energy%20Transfer%20System&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Nirmal%20Mukundan,%20C.%20M.&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=12385&rft.epage=12395&rft.pages=12385-12395&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.3048316&rft_dat=%3Cproquest_RIE%3E2568064769%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568064769&rft_id=info:pmid/&rft_ieee_id=9316881&rfr_iscdi=true