A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System
A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2021-12, Vol.68 (12), p.12385-12395 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12395 |
---|---|
container_issue | 12 |
container_start_page | 12385 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 68 |
creator | Nirmal Mukundan, C. M. Naqvi, Syed Bilal Qaiser Singh, Yashi Singh, Bhim Jayaprakash, P. |
description | A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS. |
doi_str_mv | 10.1109/TIE.2020.3048316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2020_3048316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316881</ieee_id><sourcerecordid>2568064769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</originalsourceid><addsrcrecordid>eNo9kM9rwjAUx8PYYM7tPtglsHNd0iZNcpTinODYQXcOafIqldq4pA7cX29E2em9x_fHgw9Cz5RMKCXqbb2YTXKSk0lBmCxoeYNGlHORKcXkLRqRXMiMEFbeo4cYt4RQxikfoWaKKxOtceDwHHoIpmv_0r7oB9ikA1e-H4LvcOMD_jx0Q-vrLdih_QU8D63Lkt6nO0VWvjMBz1LH5ojXwfSxgYBXxzjA7hHdNaaL8HSdY_T9PltXH9nya76opsvM5ooOmTDgbEEkr2kJrmaF4dbUeV640kohwRgpwSmlnGlqxphiteC1FVYJZ6zjxRi9Xnr3wf8cIA566w-hTy91zktJSiZKlVzk4rLBxxig0fvQ7kw4akr0maZONPWZpr7STJGXS6QFgH-7SpKUtDgBzSVyHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568064769</pqid></control><display><type>article</type><title>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</title><source>IEEE Electronic Library (IEL)</source><creator>Nirmal Mukundan, C. M. ; Naqvi, Syed Bilal Qaiser ; Singh, Yashi ; Singh, Bhim ; Jayaprakash, P.</creator><creatorcontrib>Nirmal Mukundan, C. M. ; Naqvi, Syed Bilal Qaiser ; Singh, Yashi ; Singh, Bhim ; Jayaprakash, P.</creatorcontrib><description>A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.3048316</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Band-pass filters ; Control algorithms ; Control theory ; Converters ; Energy transfer ; Generalized integral ; Harmonic analysis ; Harmonic reduction ; Harmonics ; Incremental conductance ; Integrals ; Irradiance ; Maximum power ; Maximum power point trackers ; Multiple objective analysis ; Phase distribution ; photovoltaic (PV) array ; Photovoltaic cells ; power quality ; Reactive power ; Rejection ; Solar energy ; Steady-state ; Tuning</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-12, Vol.68 (12), p.12385-12395</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</citedby><cites>FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</cites><orcidid>0000-0001-9058-2232 ; 0000-0002-4705-2970 ; 0000-0003-1378-509X ; 0000-0003-4759-7484 ; 0000-0003-0320-6509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nirmal Mukundan, C. M.</creatorcontrib><creatorcontrib>Naqvi, Syed Bilal Qaiser</creatorcontrib><creatorcontrib>Singh, Yashi</creatorcontrib><creatorcontrib>Singh, Bhim</creatorcontrib><creatorcontrib>Jayaprakash, P.</creatorcontrib><title>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Band-pass filters</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Converters</subject><subject>Energy transfer</subject><subject>Generalized integral</subject><subject>Harmonic analysis</subject><subject>Harmonic reduction</subject><subject>Harmonics</subject><subject>Incremental conductance</subject><subject>Integrals</subject><subject>Irradiance</subject><subject>Maximum power</subject><subject>Maximum power point trackers</subject><subject>Multiple objective analysis</subject><subject>Phase distribution</subject><subject>photovoltaic (PV) array</subject><subject>Photovoltaic cells</subject><subject>power quality</subject><subject>Reactive power</subject><subject>Rejection</subject><subject>Solar energy</subject><subject>Steady-state</subject><subject>Tuning</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9rwjAUx8PYYM7tPtglsHNd0iZNcpTinODYQXcOafIqldq4pA7cX29E2em9x_fHgw9Cz5RMKCXqbb2YTXKSk0lBmCxoeYNGlHORKcXkLRqRXMiMEFbeo4cYt4RQxikfoWaKKxOtceDwHHoIpmv_0r7oB9ikA1e-H4LvcOMD_jx0Q-vrLdih_QU8D63Lkt6nO0VWvjMBz1LH5ojXwfSxgYBXxzjA7hHdNaaL8HSdY_T9PltXH9nya76opsvM5ooOmTDgbEEkr2kJrmaF4dbUeV640kohwRgpwSmlnGlqxphiteC1FVYJZ6zjxRi9Xnr3wf8cIA566w-hTy91zktJSiZKlVzk4rLBxxig0fvQ7kw4akr0maZONPWZpr7STJGXS6QFgH-7SpKUtDgBzSVyHA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nirmal Mukundan, C. M.</creator><creator>Naqvi, Syed Bilal Qaiser</creator><creator>Singh, Yashi</creator><creator>Singh, Bhim</creator><creator>Jayaprakash, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9058-2232</orcidid><orcidid>https://orcid.org/0000-0002-4705-2970</orcidid><orcidid>https://orcid.org/0000-0003-1378-509X</orcidid><orcidid>https://orcid.org/0000-0003-4759-7484</orcidid><orcidid>https://orcid.org/0000-0003-0320-6509</orcidid></search><sort><creationdate>20211201</creationdate><title>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</title><author>Nirmal Mukundan, C. M. ; Naqvi, Syed Bilal Qaiser ; Singh, Yashi ; Singh, Bhim ; Jayaprakash, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7aedc3085b16edb43a5cab223d6c878eaa88ed999dafb44494b75bc7c97dacd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Band-pass filters</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Converters</topic><topic>Energy transfer</topic><topic>Generalized integral</topic><topic>Harmonic analysis</topic><topic>Harmonic reduction</topic><topic>Harmonics</topic><topic>Incremental conductance</topic><topic>Integrals</topic><topic>Irradiance</topic><topic>Maximum power</topic><topic>Maximum power point trackers</topic><topic>Multiple objective analysis</topic><topic>Phase distribution</topic><topic>photovoltaic (PV) array</topic><topic>Photovoltaic cells</topic><topic>power quality</topic><topic>Reactive power</topic><topic>Rejection</topic><topic>Solar energy</topic><topic>Steady-state</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nirmal Mukundan, C. M.</creatorcontrib><creatorcontrib>Naqvi, Syed Bilal Qaiser</creatorcontrib><creatorcontrib>Singh, Yashi</creatorcontrib><creatorcontrib>Singh, Bhim</creatorcontrib><creatorcontrib>Jayaprakash, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nirmal Mukundan, C. M.</au><au>Naqvi, Syed Bilal Qaiser</au><au>Singh, Yashi</au><au>Singh, Bhim</au><au>Jayaprakash, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>12385</spage><epage>12395</epage><pages>12385-12395</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A cascaded generalized integral control algorithm is presented in this article for a solar energy transfer system (SETS), connected to the grid. The control algorithm introduces a two part fundamental component extraction such as, primary harmonics filter with higher order harmonic reduction and dc-offset rejection, and secondary fine fundamental component tuning with fractional order and lower harmonics rejection property. This SETS transfers electrical energy converted from solar radiant energy, efficiently to the three-phase distribution grid. The two-stage system consists of a boost type dc-dc converter on the primary side. Moreover, the incremental conductance algorithm-based operation of the boost converter ensures maximum power output from the photovoltaic (PV) array. This system is designed to meet load demands and feeds remaining power to the grid. It mitigates the reactive power and harmonics requirements of the load at any irradiance level, and thereby keeps the balanced sinusoidal grid currents, in-phase with the respective grid voltages. As the PV array power and load power are varying, performance of SETS with adverse operating conditions is validated in this work. A prototype is developed and tested under varying irradiance conditions as well as nonlinear unbalanced load. The steady-state and dynamic behaviors of the system during transient operating conditions are expressed to substantiate the acceptability of the control technique for multiobjective grid-connected SETS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.3048316</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9058-2232</orcidid><orcidid>https://orcid.org/0000-0002-4705-2970</orcidid><orcidid>https://orcid.org/0000-0003-1378-509X</orcidid><orcidid>https://orcid.org/0000-0003-4759-7484</orcidid><orcidid>https://orcid.org/0000-0003-0320-6509</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2021-12, Vol.68 (12), p.12385-12395 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2020_3048316 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Arrays Band-pass filters Control algorithms Control theory Converters Energy transfer Generalized integral Harmonic analysis Harmonic reduction Harmonics Incremental conductance Integrals Irradiance Maximum power Maximum power point trackers Multiple objective analysis Phase distribution photovoltaic (PV) array Photovoltaic cells power quality Reactive power Rejection Solar energy Steady-state Tuning |
title | A Cascaded Generalized Integral Control for Multiobjective Grid-Connected Solar Energy Transfer System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cascaded%20Generalized%20Integral%20Control%20for%20Multiobjective%20Grid-Connected%20Solar%20Energy%20Transfer%20System&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Nirmal%20Mukundan,%20C.%20M.&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=12385&rft.epage=12395&rft.pages=12385-12395&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.3048316&rft_dat=%3Cproquest_RIE%3E2568064769%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568064769&rft_id=info:pmid/&rft_ieee_id=9316881&rfr_iscdi=true |