Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking

Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-02, Vol.68 (2), p.1548-1559
Hauptverfasser: Maier, Georg, Pfaff, Florian, Pieper, Christoph, Gruna, Robin, Noack, Benjamin, Kruggel-Emden, Harald, Langle, Thomas, Hanebeck, Uwe D., Wirtz, Siegmar, Scherer, Viktor, Beyerer, Jurgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1559
container_issue 2
container_start_page 1548
container_title IEEE transactions on industrial electronics (1982)
container_volume 68
creator Maier, Georg
Pfaff, Florian
Pieper, Christoph
Gruna, Robin
Noack, Benjamin
Kruggel-Emden, Harald
Langle, Thomas
Hanebeck, Uwe D.
Wirtz, Siegmar
Scherer, Viktor
Beyerer, Jurgen
description Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.
doi_str_mv 10.1109/TIE.2020.2970643
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2020_2970643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984697</ieee_id><sourcerecordid>2457973542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mzH9lkj1VaLdQPbDyHTTLR1JjEzabof--GFk8Dj_fezPwIuWQwYwz0TbJazDhwmHEdgZLiiExYGEaB1jI-JhPgURwASHVKzvp-C8BkyMIJcYufDm31hY0zNV3sTD0YV7UNbUtq6FO7w5pusOlbG9yaHgu6aa2rmnc67zrbmvyDLtG4wY7Si8Wiyl21Q_qKpg4SX0sfh9r3ZVvMHU2syT-985yclKbu8eIwp-RtuUjuHoL18_3qbr4OciGEC1QBJUKmlPQ_yCxkXtAizxgXXDCtVYgqiwyThSi5yKDgDCKtBaCKC1VwMSXX-15_6veAvUu37WAbvzLlMox0JEI5umDvym3b9xbLtPNAjP1NGaQj29SzTUe26YGtj1ztIxUi_ttjHUvlS_8AC3N1CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457973542</pqid></control><display><type>article</type><title>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Maier, Georg ; Pfaff, Florian ; Pieper, Christoph ; Gruna, Robin ; Noack, Benjamin ; Kruggel-Emden, Harald ; Langle, Thomas ; Hanebeck, Uwe D. ; Wirtz, Siegmar ; Scherer, Viktor ; Beyerer, Jurgen</creator><creatorcontrib>Maier, Georg ; Pfaff, Florian ; Pieper, Christoph ; Gruna, Robin ; Noack, Benjamin ; Kruggel-Emden, Harald ; Langle, Thomas ; Hanebeck, Uwe D. ; Wirtz, Siegmar ; Scherer, Viktor ; Beyerer, Jurgen</creatorcontrib><description>Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2970643</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automated visual inspection ; Cameras ; Image processing ; Industrial applications ; Machine vision ; Modular systems ; Multiple target tracking ; Real time ; real-time multiobject tracking ; Real-time systems ; Scanning ; Sensor systems ; sensor-based sorting ; Sensors ; Separation ; Sorting ; Task analysis ; Tracking systems ; Transportation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-02, Vol.68 (2), p.1548-1559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</citedby><cites>FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</cites><orcidid>0000-0002-2316-3414 ; 0000-0003-2987-7685 ; 0000-0001-6698-2332 ; 0000-0003-3556-7181 ; 0000-0001-8996-5738 ; 0000-0002-1041-6750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8984697$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Maier, Georg</creatorcontrib><creatorcontrib>Pfaff, Florian</creatorcontrib><creatorcontrib>Pieper, Christoph</creatorcontrib><creatorcontrib>Gruna, Robin</creatorcontrib><creatorcontrib>Noack, Benjamin</creatorcontrib><creatorcontrib>Kruggel-Emden, Harald</creatorcontrib><creatorcontrib>Langle, Thomas</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><creatorcontrib>Wirtz, Siegmar</creatorcontrib><creatorcontrib>Scherer, Viktor</creatorcontrib><creatorcontrib>Beyerer, Jurgen</creatorcontrib><title>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.</description><subject>Automated visual inspection</subject><subject>Cameras</subject><subject>Image processing</subject><subject>Industrial applications</subject><subject>Machine vision</subject><subject>Modular systems</subject><subject>Multiple target tracking</subject><subject>Real time</subject><subject>real-time multiobject tracking</subject><subject>Real-time systems</subject><subject>Scanning</subject><subject>Sensor systems</subject><subject>sensor-based sorting</subject><subject>Sensors</subject><subject>Separation</subject><subject>Sorting</subject><subject>Task analysis</subject><subject>Tracking systems</subject><subject>Transportation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mzH9lkj1VaLdQPbDyHTTLR1JjEzabof--GFk8Dj_fezPwIuWQwYwz0TbJazDhwmHEdgZLiiExYGEaB1jI-JhPgURwASHVKzvp-C8BkyMIJcYufDm31hY0zNV3sTD0YV7UNbUtq6FO7w5pusOlbG9yaHgu6aa2rmnc67zrbmvyDLtG4wY7Si8Wiyl21Q_qKpg4SX0sfh9r3ZVvMHU2syT-985yclKbu8eIwp-RtuUjuHoL18_3qbr4OciGEC1QBJUKmlPQ_yCxkXtAizxgXXDCtVYgqiwyThSi5yKDgDCKtBaCKC1VwMSXX-15_6veAvUu37WAbvzLlMox0JEI5umDvym3b9xbLtPNAjP1NGaQj29SzTUe26YGtj1ztIxUi_ttjHUvlS_8AC3N1CQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Maier, Georg</creator><creator>Pfaff, Florian</creator><creator>Pieper, Christoph</creator><creator>Gruna, Robin</creator><creator>Noack, Benjamin</creator><creator>Kruggel-Emden, Harald</creator><creator>Langle, Thomas</creator><creator>Hanebeck, Uwe D.</creator><creator>Wirtz, Siegmar</creator><creator>Scherer, Viktor</creator><creator>Beyerer, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2316-3414</orcidid><orcidid>https://orcid.org/0000-0003-2987-7685</orcidid><orcidid>https://orcid.org/0000-0001-6698-2332</orcidid><orcidid>https://orcid.org/0000-0003-3556-7181</orcidid><orcidid>https://orcid.org/0000-0001-8996-5738</orcidid><orcidid>https://orcid.org/0000-0002-1041-6750</orcidid></search><sort><creationdate>20210201</creationdate><title>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</title><author>Maier, Georg ; Pfaff, Florian ; Pieper, Christoph ; Gruna, Robin ; Noack, Benjamin ; Kruggel-Emden, Harald ; Langle, Thomas ; Hanebeck, Uwe D. ; Wirtz, Siegmar ; Scherer, Viktor ; Beyerer, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automated visual inspection</topic><topic>Cameras</topic><topic>Image processing</topic><topic>Industrial applications</topic><topic>Machine vision</topic><topic>Modular systems</topic><topic>Multiple target tracking</topic><topic>Real time</topic><topic>real-time multiobject tracking</topic><topic>Real-time systems</topic><topic>Scanning</topic><topic>Sensor systems</topic><topic>sensor-based sorting</topic><topic>Sensors</topic><topic>Separation</topic><topic>Sorting</topic><topic>Task analysis</topic><topic>Tracking systems</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, Georg</creatorcontrib><creatorcontrib>Pfaff, Florian</creatorcontrib><creatorcontrib>Pieper, Christoph</creatorcontrib><creatorcontrib>Gruna, Robin</creatorcontrib><creatorcontrib>Noack, Benjamin</creatorcontrib><creatorcontrib>Kruggel-Emden, Harald</creatorcontrib><creatorcontrib>Langle, Thomas</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><creatorcontrib>Wirtz, Siegmar</creatorcontrib><creatorcontrib>Scherer, Viktor</creatorcontrib><creatorcontrib>Beyerer, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, Georg</au><au>Pfaff, Florian</au><au>Pieper, Christoph</au><au>Gruna, Robin</au><au>Noack, Benjamin</au><au>Kruggel-Emden, Harald</au><au>Langle, Thomas</au><au>Hanebeck, Uwe D.</au><au>Wirtz, Siegmar</au><au>Scherer, Viktor</au><au>Beyerer, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>1548</spage><epage>1559</epage><pages>1548-1559</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2970643</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2316-3414</orcidid><orcidid>https://orcid.org/0000-0003-2987-7685</orcidid><orcidid>https://orcid.org/0000-0001-6698-2332</orcidid><orcidid>https://orcid.org/0000-0003-3556-7181</orcidid><orcidid>https://orcid.org/0000-0001-8996-5738</orcidid><orcidid>https://orcid.org/0000-0002-1041-6750</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2021-02, Vol.68 (2), p.1548-1559
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2020_2970643
source IEEE Electronic Library (IEL)
subjects Automated visual inspection
Cameras
Image processing
Industrial applications
Machine vision
Modular systems
Multiple target tracking
Real time
real-time multiobject tracking
Real-time systems
Scanning
Sensor systems
sensor-based sorting
Sensors
Separation
Sorting
Task analysis
Tracking systems
Transportation
title Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evaluation%20of%20a%20Novel%20Sensor-Based%20Sorting%20Approach%20Featuring%20Predictive%20Real-Time%20Multiobject%20Tracking&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Maier,%20Georg&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=1548&rft.epage=1559&rft.pages=1548-1559&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2970643&rft_dat=%3Cproquest_cross%3E2457973542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457973542&rft_id=info:pmid/&rft_ieee_id=8984697&rfr_iscdi=true