Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking
Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during tr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2021-02, Vol.68 (2), p.1548-1559 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1559 |
---|---|
container_issue | 2 |
container_start_page | 1548 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 68 |
creator | Maier, Georg Pfaff, Florian Pieper, Christoph Gruna, Robin Noack, Benjamin Kruggel-Emden, Harald Langle, Thomas Hanebeck, Uwe D. Wirtz, Siegmar Scherer, Viktor Beyerer, Jurgen |
description | Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency. |
doi_str_mv | 10.1109/TIE.2020.2970643 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2020_2970643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984697</ieee_id><sourcerecordid>2457973542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mzH9lkj1VaLdQPbDyHTTLR1JjEzabof--GFk8Dj_fezPwIuWQwYwz0TbJazDhwmHEdgZLiiExYGEaB1jI-JhPgURwASHVKzvp-C8BkyMIJcYufDm31hY0zNV3sTD0YV7UNbUtq6FO7w5pusOlbG9yaHgu6aa2rmnc67zrbmvyDLtG4wY7Si8Wiyl21Q_qKpg4SX0sfh9r3ZVvMHU2syT-985yclKbu8eIwp-RtuUjuHoL18_3qbr4OciGEC1QBJUKmlPQ_yCxkXtAizxgXXDCtVYgqiwyThSi5yKDgDCKtBaCKC1VwMSXX-15_6veAvUu37WAbvzLlMox0JEI5umDvym3b9xbLtPNAjP1NGaQj29SzTUe26YGtj1ztIxUi_ttjHUvlS_8AC3N1CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457973542</pqid></control><display><type>article</type><title>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Maier, Georg ; Pfaff, Florian ; Pieper, Christoph ; Gruna, Robin ; Noack, Benjamin ; Kruggel-Emden, Harald ; Langle, Thomas ; Hanebeck, Uwe D. ; Wirtz, Siegmar ; Scherer, Viktor ; Beyerer, Jurgen</creator><creatorcontrib>Maier, Georg ; Pfaff, Florian ; Pieper, Christoph ; Gruna, Robin ; Noack, Benjamin ; Kruggel-Emden, Harald ; Langle, Thomas ; Hanebeck, Uwe D. ; Wirtz, Siegmar ; Scherer, Viktor ; Beyerer, Jurgen</creatorcontrib><description>Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2020.2970643</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automated visual inspection ; Cameras ; Image processing ; Industrial applications ; Machine vision ; Modular systems ; Multiple target tracking ; Real time ; real-time multiobject tracking ; Real-time systems ; Scanning ; Sensor systems ; sensor-based sorting ; Sensors ; Separation ; Sorting ; Task analysis ; Tracking systems ; Transportation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2021-02, Vol.68 (2), p.1548-1559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</citedby><cites>FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</cites><orcidid>0000-0002-2316-3414 ; 0000-0003-2987-7685 ; 0000-0001-6698-2332 ; 0000-0003-3556-7181 ; 0000-0001-8996-5738 ; 0000-0002-1041-6750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8984697$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Maier, Georg</creatorcontrib><creatorcontrib>Pfaff, Florian</creatorcontrib><creatorcontrib>Pieper, Christoph</creatorcontrib><creatorcontrib>Gruna, Robin</creatorcontrib><creatorcontrib>Noack, Benjamin</creatorcontrib><creatorcontrib>Kruggel-Emden, Harald</creatorcontrib><creatorcontrib>Langle, Thomas</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><creatorcontrib>Wirtz, Siegmar</creatorcontrib><creatorcontrib>Scherer, Viktor</creatorcontrib><creatorcontrib>Beyerer, Jurgen</creatorcontrib><title>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.</description><subject>Automated visual inspection</subject><subject>Cameras</subject><subject>Image processing</subject><subject>Industrial applications</subject><subject>Machine vision</subject><subject>Modular systems</subject><subject>Multiple target tracking</subject><subject>Real time</subject><subject>real-time multiobject tracking</subject><subject>Real-time systems</subject><subject>Scanning</subject><subject>Sensor systems</subject><subject>sensor-based sorting</subject><subject>Sensors</subject><subject>Separation</subject><subject>Sorting</subject><subject>Task analysis</subject><subject>Tracking systems</subject><subject>Transportation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpcFz6mzH9lkj1VaLdQPbDyHTTLR1JjEzabof--GFk8Dj_fezPwIuWQwYwz0TbJazDhwmHEdgZLiiExYGEaB1jI-JhPgURwASHVKzvp-C8BkyMIJcYufDm31hY0zNV3sTD0YV7UNbUtq6FO7w5pusOlbG9yaHgu6aa2rmnc67zrbmvyDLtG4wY7Si8Wiyl21Q_qKpg4SX0sfh9r3ZVvMHU2syT-985yclKbu8eIwp-RtuUjuHoL18_3qbr4OciGEC1QBJUKmlPQ_yCxkXtAizxgXXDCtVYgqiwyThSi5yKDgDCKtBaCKC1VwMSXX-15_6veAvUu37WAbvzLlMox0JEI5umDvym3b9xbLtPNAjP1NGaQj29SzTUe26YGtj1ztIxUi_ttjHUvlS_8AC3N1CQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Maier, Georg</creator><creator>Pfaff, Florian</creator><creator>Pieper, Christoph</creator><creator>Gruna, Robin</creator><creator>Noack, Benjamin</creator><creator>Kruggel-Emden, Harald</creator><creator>Langle, Thomas</creator><creator>Hanebeck, Uwe D.</creator><creator>Wirtz, Siegmar</creator><creator>Scherer, Viktor</creator><creator>Beyerer, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2316-3414</orcidid><orcidid>https://orcid.org/0000-0003-2987-7685</orcidid><orcidid>https://orcid.org/0000-0001-6698-2332</orcidid><orcidid>https://orcid.org/0000-0003-3556-7181</orcidid><orcidid>https://orcid.org/0000-0001-8996-5738</orcidid><orcidid>https://orcid.org/0000-0002-1041-6750</orcidid></search><sort><creationdate>20210201</creationdate><title>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</title><author>Maier, Georg ; Pfaff, Florian ; Pieper, Christoph ; Gruna, Robin ; Noack, Benjamin ; Kruggel-Emden, Harald ; Langle, Thomas ; Hanebeck, Uwe D. ; Wirtz, Siegmar ; Scherer, Viktor ; Beyerer, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6d0fe0b6649484b516d093cb1232319965e6b7a14d3f23b0d21079930e68d6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automated visual inspection</topic><topic>Cameras</topic><topic>Image processing</topic><topic>Industrial applications</topic><topic>Machine vision</topic><topic>Modular systems</topic><topic>Multiple target tracking</topic><topic>Real time</topic><topic>real-time multiobject tracking</topic><topic>Real-time systems</topic><topic>Scanning</topic><topic>Sensor systems</topic><topic>sensor-based sorting</topic><topic>Sensors</topic><topic>Separation</topic><topic>Sorting</topic><topic>Task analysis</topic><topic>Tracking systems</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, Georg</creatorcontrib><creatorcontrib>Pfaff, Florian</creatorcontrib><creatorcontrib>Pieper, Christoph</creatorcontrib><creatorcontrib>Gruna, Robin</creatorcontrib><creatorcontrib>Noack, Benjamin</creatorcontrib><creatorcontrib>Kruggel-Emden, Harald</creatorcontrib><creatorcontrib>Langle, Thomas</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><creatorcontrib>Wirtz, Siegmar</creatorcontrib><creatorcontrib>Scherer, Viktor</creatorcontrib><creatorcontrib>Beyerer, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, Georg</au><au>Pfaff, Florian</au><au>Pieper, Christoph</au><au>Gruna, Robin</au><au>Noack, Benjamin</au><au>Kruggel-Emden, Harald</au><au>Langle, Thomas</au><au>Hanebeck, Uwe D.</au><au>Wirtz, Siegmar</au><au>Scherer, Viktor</au><au>Beyerer, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>68</volume><issue>2</issue><spage>1548</spage><epage>1559</epage><pages>1548-1559</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Sensor-based sorting is a machine vision application that has found industrial application in various fields. An accept-or-reject task is executed by separating a material stream into two fractions. Current systems use line-scanning sensors, which is convenient as the material is perceived during transportation. However, line-scanning sensors yield a single observation of each object and no information about their movement. Due to a delay between localization and separation, assumptions regarding the location and point in time for separation need to be made based on the prior localization. Hence, it is necessary to ensure that all objects are transported at uniform velocities. This is often a complex and costly solution. In this article, we propose a new method for reliably separating particles at nonuniform velocities. The problem is transferred from a mechanical to an algorithmic level. Our novel advanced image processing approach includes equipping the sorter with an area-scan camera in combination with a real-time multiobject tracking system, which enables predictions of the location of individual objects for separation. For the experimental validation of our approach, we present a modular sorting system, which allows comparing sorting results using a line-scan and area-scan camera. Results show that our approach performs reliable separation and hence increases sorting efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2020.2970643</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2316-3414</orcidid><orcidid>https://orcid.org/0000-0003-2987-7685</orcidid><orcidid>https://orcid.org/0000-0001-6698-2332</orcidid><orcidid>https://orcid.org/0000-0003-3556-7181</orcidid><orcidid>https://orcid.org/0000-0001-8996-5738</orcidid><orcidid>https://orcid.org/0000-0002-1041-6750</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2021-02, Vol.68 (2), p.1548-1559 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2020_2970643 |
source | IEEE Electronic Library (IEL) |
subjects | Automated visual inspection Cameras Image processing Industrial applications Machine vision Modular systems Multiple target tracking Real time real-time multiobject tracking Real-time systems Scanning Sensor systems sensor-based sorting Sensors Separation Sorting Task analysis Tracking systems Transportation |
title | Experimental Evaluation of a Novel Sensor-Based Sorting Approach Featuring Predictive Real-Time Multiobject Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Evaluation%20of%20a%20Novel%20Sensor-Based%20Sorting%20Approach%20Featuring%20Predictive%20Real-Time%20Multiobject%20Tracking&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Maier,%20Georg&rft.date=2021-02-01&rft.volume=68&rft.issue=2&rft.spage=1548&rft.epage=1559&rft.pages=1548-1559&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2020.2970643&rft_dat=%3Cproquest_cross%3E2457973542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457973542&rft_id=info:pmid/&rft_ieee_id=8984697&rfr_iscdi=true |