Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control
This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differentia...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-09, Vol.67 (9), p.7841-7850 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7850 |
---|---|
container_issue | 9 |
container_start_page | 7841 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Chen, Tehuan Lou, Junqiang Yang, Yiling Ren, Zhigang Xu, Chao |
description | This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach. |
doi_str_mv | 10.1109/TIE.2019.2941136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2019_2941136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8844318</ieee_id><sourcerecordid>2401125240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</originalsourceid><addsrcrecordid>eNo9ULFuwjAQtapWKqXdK3Wx1NnU59iJPVYRLUggBqCrlQQnDYI4tZ2Bv68pqMvd6e69p3cPoWegEwCq3jbz6YRRUBOmOECS3qARCJERpbi8RSPKMkko5ek9evB-TylwAWKEmq-2dEVobYfXQ9874_15tjUu8Kxtvsm6N2aHl0XlLFm2seJ5F0wTOXG9Pvlgjnjr267BuT32Q_jTKg541Yf2GHtuu-Ds4RHd1cXBm6drH6Ptx3STz8hi9TnP3xekYgoCUSVLq1qxrCog4TXPJFPKSMEzZhLBKBeUqTKTpUgVxOVOQZHGkzRQ84rTZIxeL7q9sz-D8UHv7eCiIa8ZpwBMsD8UvaDiP947U-veRbfupIHqc5w6xqnPceprnJHycqG0xph_uJScJyCTXwEjb-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401125240</pqid></control><display><type>article</type><title>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Tehuan ; Lou, Junqiang ; Yang, Yiling ; Ren, Zhigang ; Xu, Chao</creator><creatorcontrib>Chen, Tehuan ; Lou, Junqiang ; Yang, Yiling ; Ren, Zhigang ; Xu, Chao</creatorcontrib><description>This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2941136</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computational optimal control ; Computer simulation ; Dynamic models ; Frequency modulation ; Hamilton's principle ; High speed ; macro–micro integrated system ; Mathematical model ; Microbeams ; Micromanipulators ; Optimal control ; Optimization ; Ordinary differential equations ; Parameterization ; Partial differential equations ; Stability analysis ; Vibration control ; vibration suppression ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-09, Vol.67 (9), p.7841-7850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</citedby><cites>FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</cites><orcidid>0000-0002-2759-6364 ; 0000-0002-0913-0130 ; 0000-0001-9771-850X ; 0000-0002-8970-8472 ; 0000-0002-5370-4410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8844318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8844318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Lou, Junqiang</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><title>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.</description><subject>Computational modeling</subject><subject>Computational optimal control</subject><subject>Computer simulation</subject><subject>Dynamic models</subject><subject>Frequency modulation</subject><subject>Hamilton's principle</subject><subject>High speed</subject><subject>macro–micro integrated system</subject><subject>Mathematical model</subject><subject>Microbeams</subject><subject>Micromanipulators</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Parameterization</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><subject>Vibration control</subject><subject>vibration suppression</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9ULFuwjAQtapWKqXdK3Wx1NnU59iJPVYRLUggBqCrlQQnDYI4tZ2Bv68pqMvd6e69p3cPoWegEwCq3jbz6YRRUBOmOECS3qARCJERpbi8RSPKMkko5ek9evB-TylwAWKEmq-2dEVobYfXQ9874_15tjUu8Kxtvsm6N2aHl0XlLFm2seJ5F0wTOXG9Pvlgjnjr267BuT32Q_jTKg541Yf2GHtuu-Ds4RHd1cXBm6drH6Ptx3STz8hi9TnP3xekYgoCUSVLq1qxrCog4TXPJFPKSMEzZhLBKBeUqTKTpUgVxOVOQZHGkzRQ84rTZIxeL7q9sz-D8UHv7eCiIa8ZpwBMsD8UvaDiP947U-veRbfupIHqc5w6xqnPceprnJHycqG0xph_uJScJyCTXwEjb-M</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Chen, Tehuan</creator><creator>Lou, Junqiang</creator><creator>Yang, Yiling</creator><creator>Ren, Zhigang</creator><creator>Xu, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid><orcidid>https://orcid.org/0000-0001-9771-850X</orcidid><orcidid>https://orcid.org/0000-0002-8970-8472</orcidid><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid></search><sort><creationdate>20200901</creationdate><title>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</title><author>Chen, Tehuan ; Lou, Junqiang ; Yang, Yiling ; Ren, Zhigang ; Xu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>Computational optimal control</topic><topic>Computer simulation</topic><topic>Dynamic models</topic><topic>Frequency modulation</topic><topic>Hamilton's principle</topic><topic>High speed</topic><topic>macro–micro integrated system</topic><topic>Mathematical model</topic><topic>Microbeams</topic><topic>Micromanipulators</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Parameterization</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><topic>Vibration control</topic><topic>vibration suppression</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Lou, Junqiang</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Tehuan</au><au>Lou, Junqiang</au><au>Yang, Yiling</au><au>Ren, Zhigang</au><au>Xu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>67</volume><issue>9</issue><spage>7841</spage><epage>7850</epage><pages>7841-7850</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2941136</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid><orcidid>https://orcid.org/0000-0001-9771-850X</orcidid><orcidid>https://orcid.org/0000-0002-8970-8472</orcidid><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-09, Vol.67 (9), p.7841-7850 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2019_2941136 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computational optimal control Computer simulation Dynamic models Frequency modulation Hamilton's principle High speed macro–micro integrated system Mathematical model Microbeams Micromanipulators Optimal control Optimization Ordinary differential equations Parameterization Partial differential equations Stability analysis Vibration control vibration suppression Vibrations |
title | Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20Suppression%20of%20a%20High-Speed%20Macro-Micro%20Integrated%20System%20Using%20Computational%20Optimal%20Control&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Chen,%20Tehuan&rft.date=2020-09-01&rft.volume=67&rft.issue=9&rft.spage=7841&rft.epage=7850&rft.pages=7841-7850&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2941136&rft_dat=%3Cproquest_RIE%3E2401125240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401125240&rft_id=info:pmid/&rft_ieee_id=8844318&rfr_iscdi=true |