Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control

This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-09, Vol.67 (9), p.7841-7850
Hauptverfasser: Chen, Tehuan, Lou, Junqiang, Yang, Yiling, Ren, Zhigang, Xu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7850
container_issue 9
container_start_page 7841
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Chen, Tehuan
Lou, Junqiang
Yang, Yiling
Ren, Zhigang
Xu, Chao
description This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.
doi_str_mv 10.1109/TIE.2019.2941136
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2019_2941136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8844318</ieee_id><sourcerecordid>2401125240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</originalsourceid><addsrcrecordid>eNo9ULFuwjAQtapWKqXdK3Wx1NnU59iJPVYRLUggBqCrlQQnDYI4tZ2Bv68pqMvd6e69p3cPoWegEwCq3jbz6YRRUBOmOECS3qARCJERpbi8RSPKMkko5ek9evB-TylwAWKEmq-2dEVobYfXQ9874_15tjUu8Kxtvsm6N2aHl0XlLFm2seJ5F0wTOXG9Pvlgjnjr267BuT32Q_jTKg541Yf2GHtuu-Ds4RHd1cXBm6drH6Ptx3STz8hi9TnP3xekYgoCUSVLq1qxrCog4TXPJFPKSMEzZhLBKBeUqTKTpUgVxOVOQZHGkzRQ84rTZIxeL7q9sz-D8UHv7eCiIa8ZpwBMsD8UvaDiP947U-veRbfupIHqc5w6xqnPceprnJHycqG0xph_uJScJyCTXwEjb-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401125240</pqid></control><display><type>article</type><title>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Tehuan ; Lou, Junqiang ; Yang, Yiling ; Ren, Zhigang ; Xu, Chao</creator><creatorcontrib>Chen, Tehuan ; Lou, Junqiang ; Yang, Yiling ; Ren, Zhigang ; Xu, Chao</creatorcontrib><description>This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2941136</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computational optimal control ; Computer simulation ; Dynamic models ; Frequency modulation ; Hamilton's principle ; High speed ; macro–micro integrated system ; Mathematical model ; Microbeams ; Micromanipulators ; Optimal control ; Optimization ; Ordinary differential equations ; Parameterization ; Partial differential equations ; Stability analysis ; Vibration control ; vibration suppression ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-09, Vol.67 (9), p.7841-7850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</citedby><cites>FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</cites><orcidid>0000-0002-2759-6364 ; 0000-0002-0913-0130 ; 0000-0001-9771-850X ; 0000-0002-8970-8472 ; 0000-0002-5370-4410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8844318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8844318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Lou, Junqiang</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><title>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.</description><subject>Computational modeling</subject><subject>Computational optimal control</subject><subject>Computer simulation</subject><subject>Dynamic models</subject><subject>Frequency modulation</subject><subject>Hamilton's principle</subject><subject>High speed</subject><subject>macro–micro integrated system</subject><subject>Mathematical model</subject><subject>Microbeams</subject><subject>Micromanipulators</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Parameterization</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><subject>Vibration control</subject><subject>vibration suppression</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9ULFuwjAQtapWKqXdK3Wx1NnU59iJPVYRLUggBqCrlQQnDYI4tZ2Bv68pqMvd6e69p3cPoWegEwCq3jbz6YRRUBOmOECS3qARCJERpbi8RSPKMkko5ek9evB-TylwAWKEmq-2dEVobYfXQ9874_15tjUu8Kxtvsm6N2aHl0XlLFm2seJ5F0wTOXG9Pvlgjnjr267BuT32Q_jTKg541Yf2GHtuu-Ds4RHd1cXBm6drH6Ptx3STz8hi9TnP3xekYgoCUSVLq1qxrCog4TXPJFPKSMEzZhLBKBeUqTKTpUgVxOVOQZHGkzRQ84rTZIxeL7q9sz-D8UHv7eCiIa8ZpwBMsD8UvaDiP947U-veRbfupIHqc5w6xqnPceprnJHycqG0xph_uJScJyCTXwEjb-M</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Chen, Tehuan</creator><creator>Lou, Junqiang</creator><creator>Yang, Yiling</creator><creator>Ren, Zhigang</creator><creator>Xu, Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid><orcidid>https://orcid.org/0000-0001-9771-850X</orcidid><orcidid>https://orcid.org/0000-0002-8970-8472</orcidid><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid></search><sort><creationdate>20200901</creationdate><title>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</title><author>Chen, Tehuan ; Lou, Junqiang ; Yang, Yiling ; Ren, Zhigang ; Xu, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9b26cf927ca134f478299e85472e352045029b78b5691472d91a62e38e1f4c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>Computational optimal control</topic><topic>Computer simulation</topic><topic>Dynamic models</topic><topic>Frequency modulation</topic><topic>Hamilton's principle</topic><topic>High speed</topic><topic>macro–micro integrated system</topic><topic>Mathematical model</topic><topic>Microbeams</topic><topic>Micromanipulators</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Parameterization</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><topic>Vibration control</topic><topic>vibration suppression</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tehuan</creatorcontrib><creatorcontrib>Lou, Junqiang</creatorcontrib><creatorcontrib>Yang, Yiling</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Tehuan</au><au>Lou, Junqiang</au><au>Yang, Yiling</au><au>Ren, Zhigang</au><au>Xu, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>67</volume><issue>9</issue><spage>7841</spage><epage>7850</epage><pages>7841-7850</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article considers a dynamic modeling and computational optimal control for vibration suppression of a new high-speed macro-micro integrated system, which is mainly consisted of a macrostage and a pair of flexible microbeams (FMs). In this article, we model the FM motion by a partial differential equation (PDE) system and model the dynamics of the macro-micro integrated system based on the Hamilton's principle. Then, a computational optimal control problem for the vibration suppression of the FM is proposed. To solve this optimal control problem, we first use the assumed mode method to obtain an ordinary differential equation model based on the original microbeam PDE system. Some theoretical analysis is given to try to avoid spillover instability based on the assumed model using infinitely many modes and characteristics of a microbeam. Then, we apply the control parametrization approach to approximate the trajectory of the macrostage motion by piecewise-quintic functions and derive the gradient of the objective function with respect to the decision variables. Finally, we conclude this article with numerical simulations and experimental results to validate the effectiveness of the proposed dynamic model and computational optimization approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2941136</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2759-6364</orcidid><orcidid>https://orcid.org/0000-0002-0913-0130</orcidid><orcidid>https://orcid.org/0000-0001-9771-850X</orcidid><orcidid>https://orcid.org/0000-0002-8970-8472</orcidid><orcidid>https://orcid.org/0000-0002-5370-4410</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-09, Vol.67 (9), p.7841-7850
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2019_2941136
source IEEE Electronic Library (IEL)
subjects Computational modeling
Computational optimal control
Computer simulation
Dynamic models
Frequency modulation
Hamilton's principle
High speed
macro–micro integrated system
Mathematical model
Microbeams
Micromanipulators
Optimal control
Optimization
Ordinary differential equations
Parameterization
Partial differential equations
Stability analysis
Vibration control
vibration suppression
Vibrations
title Vibration Suppression of a High-Speed Macro-Micro Integrated System Using Computational Optimal Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20Suppression%20of%20a%20High-Speed%20Macro-Micro%20Integrated%20System%20Using%20Computational%20Optimal%20Control&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Chen,%20Tehuan&rft.date=2020-09-01&rft.volume=67&rft.issue=9&rft.spage=7841&rft.epage=7850&rft.pages=7841-7850&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2941136&rft_dat=%3Cproquest_RIE%3E2401125240%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401125240&rft_id=info:pmid/&rft_ieee_id=8844318&rfr_iscdi=true