S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations

This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-01, Vol.67 (1), p.265-275
Hauptverfasser: Seo, Gab-Su, Le, Hanh-Phuc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 1
container_start_page 265
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Seo, Gab-Su
Le, Hanh-Phuc
description This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.
doi_str_mv 10.1109/TIE.2019.2897537
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2019_2897537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641480</ieee_id><sourcerecordid>2285335905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjeTbxs9Fyctju77ZEsKCQkJILnppSuluAW20XDv3cJxNMc5nsveR8h9wwGjIF6Xk7HAw5MDbhUJYrygvQYYkmVyuUl6QEvJQXIi2tyk9IGgOXIsEfeFnRyWEW_zhat29FR-G2yUUVHVVaF5sfF1kU6bMz2kHzKQp3Ndy6a1ocmM806G7nkP5ojmvz6_Ei35Ko22-TuzrdP3l_Gy2pCZ_PXaTWcUSsKaGluOLOFBUCLKLHG0qqihnXBgVuuhHDGdMs4SIGrujQFk9aWFlCaQq2wFH3yeOoNqfU6Wd86-2lD0zjbaoYgJJMd9HSCdjF8711q9SbsYzcoac4lCoEKsKPgRNkYUoqu1rvov0w8aAb6qFd3evVRrz7r7SIPp4h3zv3jsshZLkH8AbpDc2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285335905</pqid></control><display><type>article</type><title>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</title><source>IEEE Electronic Library (IEL)</source><creator>Seo, Gab-Su ; Le, Hanh-Phuc</creator><creatorcontrib>Seo, Gab-Su ; Le, Hanh-Phuc ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2897537</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Battery chargers ; Buck converter ; Buck converters ; Capacitors ; Conduction losses ; Data buses ; DC-DC ; Efficiency ; Electric potential ; Full load ; Inductance ; inductor-less power converter ; Inductors ; Lithium-ion batteries ; Optimization ; Parasitics (electronics) ; Power cables ; Power conversion ; POWER TRANSMISSION AND DISTRIBUTION ; Rechargeable batteries ; S-Hybrid converter ; smart power cable ; step-down power conversion ; Switches ; Thermal management ; Universal Serial Bus ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-01, Vol.67 (1), p.265-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</citedby><cites>FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</cites><orcidid>0000-0003-0021-3682 ; 0000-0002-5909-5978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8641480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1503818$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Gab-Su</creatorcontrib><creatorcontrib>Le, Hanh-Phuc</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.</description><subject>Battery chargers</subject><subject>Buck converter</subject><subject>Buck converters</subject><subject>Capacitors</subject><subject>Conduction losses</subject><subject>Data buses</subject><subject>DC-DC</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Full load</subject><subject>Inductance</subject><subject>inductor-less power converter</subject><subject>Inductors</subject><subject>Lithium-ion batteries</subject><subject>Optimization</subject><subject>Parasitics (electronics)</subject><subject>Power cables</subject><subject>Power conversion</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Rechargeable batteries</subject><subject>S-Hybrid converter</subject><subject>smart power cable</subject><subject>step-down power conversion</subject><subject>Switches</subject><subject>Thermal management</subject><subject>Universal Serial Bus</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYjeTbxs9Fyctju77ZEsKCQkJILnppSuluAW20XDv3cJxNMc5nsveR8h9wwGjIF6Xk7HAw5MDbhUJYrygvQYYkmVyuUl6QEvJQXIi2tyk9IGgOXIsEfeFnRyWEW_zhat29FR-G2yUUVHVVaF5sfF1kU6bMz2kHzKQp3Ndy6a1ocmM806G7nkP5ojmvz6_Ei35Ko22-TuzrdP3l_Gy2pCZ_PXaTWcUSsKaGluOLOFBUCLKLHG0qqihnXBgVuuhHDGdMs4SIGrujQFk9aWFlCaQq2wFH3yeOoNqfU6Wd86-2lD0zjbaoYgJJMd9HSCdjF8711q9SbsYzcoac4lCoEKsKPgRNkYUoqu1rvov0w8aAb6qFd3evVRrz7r7SIPp4h3zv3jsshZLkH8AbpDc2w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Seo, Gab-Su</creator><creator>Le, Hanh-Phuc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0021-3682</orcidid><orcidid>https://orcid.org/0000-0002-5909-5978</orcidid></search><sort><creationdate>20200101</creationdate><title>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</title><author>Seo, Gab-Su ; Le, Hanh-Phuc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Battery chargers</topic><topic>Buck converter</topic><topic>Buck converters</topic><topic>Capacitors</topic><topic>Conduction losses</topic><topic>Data buses</topic><topic>DC-DC</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Full load</topic><topic>Inductance</topic><topic>inductor-less power converter</topic><topic>Inductors</topic><topic>Lithium-ion batteries</topic><topic>Optimization</topic><topic>Parasitics (electronics)</topic><topic>Power cables</topic><topic>Power conversion</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Rechargeable batteries</topic><topic>S-Hybrid converter</topic><topic>smart power cable</topic><topic>step-down power conversion</topic><topic>Switches</topic><topic>Thermal management</topic><topic>Universal Serial Bus</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Gab-Su</creatorcontrib><creatorcontrib>Le, Hanh-Phuc</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seo, Gab-Su</au><au>Le, Hanh-Phuc</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2897537</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0021-3682</orcidid><orcidid>https://orcid.org/0000-0002-5909-5978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-01, Vol.67 (1), p.265-275
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2019_2897537
source IEEE Electronic Library (IEL)
subjects Battery chargers
Buck converter
Buck converters
Capacitors
Conduction losses
Data buses
DC-DC
Efficiency
Electric potential
Full load
Inductance
inductor-less power converter
Inductors
Lithium-ion batteries
Optimization
Parasitics (electronics)
Power cables
Power conversion
POWER TRANSMISSION AND DISTRIBUTION
Rechargeable batteries
S-Hybrid converter
smart power cable
step-down power conversion
Switches
Thermal management
Universal Serial Bus
Voltage
title S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-Hybrid%20Step-Down%20DC-DC%20Converter-Analysis%20of%20Operation%20and%20Design%20Considerations&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Seo,%20Gab-Su&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-01-01&rft.volume=67&rft.issue=1&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2897537&rft_dat=%3Cproquest_RIE%3E2285335905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285335905&rft_id=info:pmid/&rft_ieee_id=8641480&rfr_iscdi=true