S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations
This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-01, Vol.67 (1), p.265-275 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 1 |
container_start_page | 265 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Seo, Gab-Su Le, Hanh-Phuc |
description | This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management. |
doi_str_mv | 10.1109/TIE.2019.2897537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2019_2897537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641480</ieee_id><sourcerecordid>2285335905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjeTbxs9Fyctju77ZEsKCQkJILnppSuluAW20XDv3cJxNMc5nsveR8h9wwGjIF6Xk7HAw5MDbhUJYrygvQYYkmVyuUl6QEvJQXIi2tyk9IGgOXIsEfeFnRyWEW_zhat29FR-G2yUUVHVVaF5sfF1kU6bMz2kHzKQp3Ndy6a1ocmM806G7nkP5ojmvz6_Ei35Ko22-TuzrdP3l_Gy2pCZ_PXaTWcUSsKaGluOLOFBUCLKLHG0qqihnXBgVuuhHDGdMs4SIGrujQFk9aWFlCaQq2wFH3yeOoNqfU6Wd86-2lD0zjbaoYgJJMd9HSCdjF8711q9SbsYzcoac4lCoEKsKPgRNkYUoqu1rvov0w8aAb6qFd3evVRrz7r7SIPp4h3zv3jsshZLkH8AbpDc2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285335905</pqid></control><display><type>article</type><title>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</title><source>IEEE Electronic Library (IEL)</source><creator>Seo, Gab-Su ; Le, Hanh-Phuc</creator><creatorcontrib>Seo, Gab-Su ; Le, Hanh-Phuc ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2897537</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Battery chargers ; Buck converter ; Buck converters ; Capacitors ; Conduction losses ; Data buses ; DC-DC ; Efficiency ; Electric potential ; Full load ; Inductance ; inductor-less power converter ; Inductors ; Lithium-ion batteries ; Optimization ; Parasitics (electronics) ; Power cables ; Power conversion ; POWER TRANSMISSION AND DISTRIBUTION ; Rechargeable batteries ; S-Hybrid converter ; smart power cable ; step-down power conversion ; Switches ; Thermal management ; Universal Serial Bus ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-01, Vol.67 (1), p.265-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</citedby><cites>FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</cites><orcidid>0000-0003-0021-3682 ; 0000-0002-5909-5978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8641480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1503818$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Gab-Su</creatorcontrib><creatorcontrib>Le, Hanh-Phuc</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.</description><subject>Battery chargers</subject><subject>Buck converter</subject><subject>Buck converters</subject><subject>Capacitors</subject><subject>Conduction losses</subject><subject>Data buses</subject><subject>DC-DC</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Full load</subject><subject>Inductance</subject><subject>inductor-less power converter</subject><subject>Inductors</subject><subject>Lithium-ion batteries</subject><subject>Optimization</subject><subject>Parasitics (electronics)</subject><subject>Power cables</subject><subject>Power conversion</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Rechargeable batteries</subject><subject>S-Hybrid converter</subject><subject>smart power cable</subject><subject>step-down power conversion</subject><subject>Switches</subject><subject>Thermal management</subject><subject>Universal Serial Bus</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYjeTbxs9Fyctju77ZEsKCQkJILnppSuluAW20XDv3cJxNMc5nsveR8h9wwGjIF6Xk7HAw5MDbhUJYrygvQYYkmVyuUl6QEvJQXIi2tyk9IGgOXIsEfeFnRyWEW_zhat29FR-G2yUUVHVVaF5sfF1kU6bMz2kHzKQp3Ndy6a1ocmM806G7nkP5ojmvz6_Ei35Ko22-TuzrdP3l_Gy2pCZ_PXaTWcUSsKaGluOLOFBUCLKLHG0qqihnXBgVuuhHDGdMs4SIGrujQFk9aWFlCaQq2wFH3yeOoNqfU6Wd86-2lD0zjbaoYgJJMd9HSCdjF8711q9SbsYzcoac4lCoEKsKPgRNkYUoqu1rvov0w8aAb6qFd3evVRrz7r7SIPp4h3zv3jsshZLkH8AbpDc2w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Seo, Gab-Su</creator><creator>Le, Hanh-Phuc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0021-3682</orcidid><orcidid>https://orcid.org/0000-0002-5909-5978</orcidid></search><sort><creationdate>20200101</creationdate><title>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</title><author>Seo, Gab-Su ; Le, Hanh-Phuc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-4a21c6c005c5585f57c96f0d6202c2933eaa11020835bf7a618cc7c058a69b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Battery chargers</topic><topic>Buck converter</topic><topic>Buck converters</topic><topic>Capacitors</topic><topic>Conduction losses</topic><topic>Data buses</topic><topic>DC-DC</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Full load</topic><topic>Inductance</topic><topic>inductor-less power converter</topic><topic>Inductors</topic><topic>Lithium-ion batteries</topic><topic>Optimization</topic><topic>Parasitics (electronics)</topic><topic>Power cables</topic><topic>Power conversion</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Rechargeable batteries</topic><topic>S-Hybrid converter</topic><topic>smart power cable</topic><topic>step-down power conversion</topic><topic>Switches</topic><topic>Thermal management</topic><topic>Universal Serial Bus</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Gab-Su</creatorcontrib><creatorcontrib>Le, Hanh-Phuc</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seo, Gab-Su</au><au>Le, Hanh-Phuc</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>67</volume><issue>1</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper presents a new highly integrable hybrid step-down converter that merges switched-inductor and switched-capacitor operations and significantly reduces onboard loss by using the input cable's parasitic inductance as its main inductor. This converter has the inductor placed at the input with a smaller voltage swing, leading to possible use of a smaller inductor and low-voltage rating switches that generally translate to reduced conduction losses. Analyses of converter operation and losses to reveal its original characteristics and design guidelines are presented to facilitate the components optimization. The converter architecture is verified by a proof-of-concept 15-W inductor-less lithium-ion battery charger prototype that uses a 1-m USB 3.0 cable as inductor. The converter, switched at 2 MHz from a 5-V input, experimentally achieves 89.7% peak efficiency and 6% higher efficiency at full load than a Buck converter counterpart. This high efficiency and zero onboard inductor yield a relative 45.7% onboard loss reduction at full load, promising excellent integration feasibility and superior system thermal management.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2897537</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0021-3682</orcidid><orcidid>https://orcid.org/0000-0002-5909-5978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-01, Vol.67 (1), p.265-275 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2019_2897537 |
source | IEEE Electronic Library (IEL) |
subjects | Battery chargers Buck converter Buck converters Capacitors Conduction losses Data buses DC-DC Efficiency Electric potential Full load Inductance inductor-less power converter Inductors Lithium-ion batteries Optimization Parasitics (electronics) Power cables Power conversion POWER TRANSMISSION AND DISTRIBUTION Rechargeable batteries S-Hybrid converter smart power cable step-down power conversion Switches Thermal management Universal Serial Bus Voltage |
title | S-Hybrid Step-Down DC-DC Converter-Analysis of Operation and Design Considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-Hybrid%20Step-Down%20DC-DC%20Converter-Analysis%20of%20Operation%20and%20Design%20Considerations&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Seo,%20Gab-Su&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-01-01&rft.volume=67&rft.issue=1&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2897537&rft_dat=%3Cproquest_RIE%3E2285335905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285335905&rft_id=info:pmid/&rft_ieee_id=8641480&rfr_iscdi=true |