A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain

The state of health (SOH) of lithium-ion batteries (LIBs) is a critical parameter of the battery management system. Because of the complex internal electrochemical properties of LIBs and uncertain external working environment, it is difficult to achieve an accurate SOH determination. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-10, Vol.66 (10), p.7706-7716
Hauptverfasser: Dai, Houde, Zhao, Guangcai, Lin, Mingqiang, Wu, Ji, Zheng, Gengfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7716
container_issue 10
container_start_page 7706
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Dai, Houde
Zhao, Guangcai
Lin, Mingqiang
Wu, Ji
Zheng, Gengfeng
description The state of health (SOH) of lithium-ion batteries (LIBs) is a critical parameter of the battery management system. Because of the complex internal electrochemical properties of LIBs and uncertain external working environment, it is difficult to achieve an accurate SOH determination. In this paper, we have proposed a novel SOH estimation method by using a prior knowledge-based neural network (PKNN) and the Markov chain for a single LIB. First, we extract multiple features to capture the battery aging process. Due to its effective fitting ability for complex nonlinear problems, the neural network with a prior knowledge-based optimization strategy is adopted for the battery SOH prediction. The Markov chain, with the advantageous prediction performance for the long-term system, is established to modify the PKNN estimation results based on the prediction error. Experimental results show that the maximum estimation error of the SOH is reduced to less than 1.7% by adopting the proposed method. By comparing with the group method of data handling and the back-propagation neural network in conjunction with the Levenberg-Marquardt algorithm, the proposed estimation method obtains the highest SOH accuracy.
doi_str_mv 10.1109/TIE.2018.2880703
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2018_2880703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8536873</ieee_id><sourcerecordid>2235825991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-488df09a50766978013732d2b72d844ed069a92527e92ec0c1b31d9442b355453</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWB97wU3A9dSb1yRZaqlarA9Q10Pa3HFGx4kmqeLeH-6UiqtzF985Fz5CjhiMGQN7-jibjjkwM-bGgAaxRUZMKV1YK802GQHXpgCQ5S7ZS-kFgEnF1Ij8nNHb8Ikdnabcvrnchp7eYG6Cp3WINDdIH7LLSENNr9B1uVlf8zY37eqtmA30ucsZ4zd9Sm3_TO9jO9Su-_DVoX_G4twl9PQWV9F1Q-SvEF-p6z29cfE1fNJJ49r-gOzUrkt4-Jf75Oli-ji5KuZ3l7PJ2bxYcstyIY3xNVinQJel1QaY0IJ7vtDcGynRQ2md5YprtByXsGQLwbyVki-EUlKJfXKy2X2P4WOFKVcvYRX74WXFuVCGK2vZQMGGWsaQUsS6eo-DmvhdMajWrqvBdbV2Xf25HirHm0qLiP-4UaI0Wohf1fB5Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235825991</pqid></control><display><type>article</type><title>A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Houde ; Zhao, Guangcai ; Lin, Mingqiang ; Wu, Ji ; Zheng, Gengfeng</creator><creatorcontrib>Dai, Houde ; Zhao, Guangcai ; Lin, Mingqiang ; Wu, Ji ; Zheng, Gengfeng</creatorcontrib><description>The state of health (SOH) of lithium-ion batteries (LIBs) is a critical parameter of the battery management system. Because of the complex internal electrochemical properties of LIBs and uncertain external working environment, it is difficult to achieve an accurate SOH determination. In this paper, we have proposed a novel SOH estimation method by using a prior knowledge-based neural network (PKNN) and the Markov chain for a single LIB. First, we extract multiple features to capture the battery aging process. Due to its effective fitting ability for complex nonlinear problems, the neural network with a prior knowledge-based optimization strategy is adopted for the battery SOH prediction. The Markov chain, with the advantageous prediction performance for the long-term system, is established to modify the PKNN estimation results based on the prediction error. Experimental results show that the maximum estimation error of the SOH is reduced to less than 1.7% by adopting the proposed method. By comparing with the group method of data handling and the back-propagation neural network in conjunction with the Levenberg-Marquardt algorithm, the proposed estimation method obtains the highest SOH accuracy.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2880703</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back propagation ; Back propagation networks ; Electrochemical analysis ; Estimation ; Feature extraction ; Group method of data handling ; Knowledge base ; Knowledge management ; Lithium ; Lithium-ion batteries ; Lithium-ion battery (LIB) ; Markov analysis ; Markov chain ; Markov chains ; Markov processes ; Neural networks ; Neurons ; Optimization ; Power management ; prior knowledge-based optimization strategy ; Rechargeable batteries ; State of charge ; state-of-health (SOH) ; Working conditions</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-10, Vol.66 (10), p.7706-7716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-488df09a50766978013732d2b72d844ed069a92527e92ec0c1b31d9442b355453</citedby><cites>FETCH-LOGICAL-c291t-488df09a50766978013732d2b72d844ed069a92527e92ec0c1b31d9442b355453</cites><orcidid>0000-0001-7417-7974 ; 0000-0001-6637-2702 ; 0000-0003-3320-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8536873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8536873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Houde</creatorcontrib><creatorcontrib>Zhao, Guangcai</creatorcontrib><creatorcontrib>Lin, Mingqiang</creatorcontrib><creatorcontrib>Wu, Ji</creatorcontrib><creatorcontrib>Zheng, Gengfeng</creatorcontrib><title>A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The state of health (SOH) of lithium-ion batteries (LIBs) is a critical parameter of the battery management system. Because of the complex internal electrochemical properties of LIBs and uncertain external working environment, it is difficult to achieve an accurate SOH determination. In this paper, we have proposed a novel SOH estimation method by using a prior knowledge-based neural network (PKNN) and the Markov chain for a single LIB. First, we extract multiple features to capture the battery aging process. Due to its effective fitting ability for complex nonlinear problems, the neural network with a prior knowledge-based optimization strategy is adopted for the battery SOH prediction. The Markov chain, with the advantageous prediction performance for the long-term system, is established to modify the PKNN estimation results based on the prediction error. Experimental results show that the maximum estimation error of the SOH is reduced to less than 1.7% by adopting the proposed method. By comparing with the group method of data handling and the back-propagation neural network in conjunction with the Levenberg-Marquardt algorithm, the proposed estimation method obtains the highest SOH accuracy.</description><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Electrochemical analysis</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Group method of data handling</subject><subject>Knowledge base</subject><subject>Knowledge management</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery (LIB)</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Power management</subject><subject>prior knowledge-based optimization strategy</subject><subject>Rechargeable batteries</subject><subject>State of charge</subject><subject>state-of-health (SOH)</subject><subject>Working conditions</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWB97wU3A9dSb1yRZaqlarA9Q10Pa3HFGx4kmqeLeH-6UiqtzF985Fz5CjhiMGQN7-jibjjkwM-bGgAaxRUZMKV1YK802GQHXpgCQ5S7ZS-kFgEnF1Ij8nNHb8Ikdnabcvrnchp7eYG6Cp3WINDdIH7LLSENNr9B1uVlf8zY37eqtmA30ucsZ4zd9Sm3_TO9jO9Su-_DVoX_G4twl9PQWV9F1Q-SvEF-p6z29cfE1fNJJ49r-gOzUrkt4-Jf75Oli-ji5KuZ3l7PJ2bxYcstyIY3xNVinQJel1QaY0IJ7vtDcGynRQ2md5YprtByXsGQLwbyVki-EUlKJfXKy2X2P4WOFKVcvYRX74WXFuVCGK2vZQMGGWsaQUsS6eo-DmvhdMajWrqvBdbV2Xf25HirHm0qLiP-4UaI0Wohf1fB5Dw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Dai, Houde</creator><creator>Zhao, Guangcai</creator><creator>Lin, Mingqiang</creator><creator>Wu, Ji</creator><creator>Zheng, Gengfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7417-7974</orcidid><orcidid>https://orcid.org/0000-0001-6637-2702</orcidid><orcidid>https://orcid.org/0000-0003-3320-3704</orcidid></search><sort><creationdate>20191001</creationdate><title>A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain</title><author>Dai, Houde ; Zhao, Guangcai ; Lin, Mingqiang ; Wu, Ji ; Zheng, Gengfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-488df09a50766978013732d2b72d844ed069a92527e92ec0c1b31d9442b355453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Electrochemical analysis</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Group method of data handling</topic><topic>Knowledge base</topic><topic>Knowledge management</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery (LIB)</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Power management</topic><topic>prior knowledge-based optimization strategy</topic><topic>Rechargeable batteries</topic><topic>State of charge</topic><topic>state-of-health (SOH)</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Houde</creatorcontrib><creatorcontrib>Zhao, Guangcai</creatorcontrib><creatorcontrib>Lin, Mingqiang</creatorcontrib><creatorcontrib>Wu, Ji</creatorcontrib><creatorcontrib>Zheng, Gengfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Houde</au><au>Zhao, Guangcai</au><au>Lin, Mingqiang</au><au>Wu, Ji</au><au>Zheng, Gengfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>66</volume><issue>10</issue><spage>7706</spage><epage>7716</epage><pages>7706-7716</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The state of health (SOH) of lithium-ion batteries (LIBs) is a critical parameter of the battery management system. Because of the complex internal electrochemical properties of LIBs and uncertain external working environment, it is difficult to achieve an accurate SOH determination. In this paper, we have proposed a novel SOH estimation method by using a prior knowledge-based neural network (PKNN) and the Markov chain for a single LIB. First, we extract multiple features to capture the battery aging process. Due to its effective fitting ability for complex nonlinear problems, the neural network with a prior knowledge-based optimization strategy is adopted for the battery SOH prediction. The Markov chain, with the advantageous prediction performance for the long-term system, is established to modify the PKNN estimation results based on the prediction error. Experimental results show that the maximum estimation error of the SOH is reduced to less than 1.7% by adopting the proposed method. By comparing with the group method of data handling and the back-propagation neural network in conjunction with the Levenberg-Marquardt algorithm, the proposed estimation method obtains the highest SOH accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2880703</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7417-7974</orcidid><orcidid>https://orcid.org/0000-0001-6637-2702</orcidid><orcidid>https://orcid.org/0000-0003-3320-3704</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-10, Vol.66 (10), p.7706-7716
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2018_2880703
source IEEE Electronic Library (IEL)
subjects Back propagation
Back propagation networks
Electrochemical analysis
Estimation
Feature extraction
Group method of data handling
Knowledge base
Knowledge management
Lithium
Lithium-ion batteries
Lithium-ion battery (LIB)
Markov analysis
Markov chain
Markov chains
Markov processes
Neural networks
Neurons
Optimization
Power management
prior knowledge-based optimization strategy
Rechargeable batteries
State of charge
state-of-health (SOH)
Working conditions
title A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Estimation%20Method%20for%20the%20State%20of%20Health%20of%20Lithium-Ion%20Battery%20Using%20Prior%20Knowledge-Based%20Neural%20Network%20and%20Markov%20Chain&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Dai,%20Houde&rft.date=2019-10-01&rft.volume=66&rft.issue=10&rft.spage=7706&rft.epage=7716&rft.pages=7706-7716&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2880703&rft_dat=%3Cproquest_RIE%3E2235825991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235825991&rft_id=info:pmid/&rft_ieee_id=8536873&rfr_iscdi=true