A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application
Sensor-based application of environmental monitoring has a huge potential but the only limiting factor is that it is battery operated and thus energy constraint. Energy harvesting is a boon as it helps in environmental monitoring applications. Thermoelectric energy harvesting (TEH) has been explored...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2019-05, Vol.66 (5), p.3530-3538 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3538 |
---|---|
container_issue | 5 |
container_start_page | 3530 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 66 |
creator | Verma, Gourav Sharma, Vidushi |
description | Sensor-based application of environmental monitoring has a huge potential but the only limiting factor is that it is battery operated and thus energy constraint. Energy harvesting is a boon as it helps in environmental monitoring applications. Thermoelectric energy harvesting (TEH) has been explored by researchers and they have proposed the various architecture of TEH systems. The temperature difference is the critical factor for developing TEH system as it directly affects the output energy of the system. In this paper, a novel thermoelectric energy harvester is proposed for wireless sensor network (WSN) based environmental monitoring application, which considers the change in temperature in a cyclic manner. Phase change material (PCM) used is of high latent heat and an intelligent algorithm is proposed that manages the heat energy and maintain the temperature gradient up to 2 ^{\circ }C. This results in heat flow in interchangeable orders during day and night, thus improving the overall output electrical energy. The intelligent algorithm and optimized framework of TEH system considering parameters affecting TEH facilitates the maintenance of \Delta T. The system is fabricated and implemented using water as PCM. The overall energy output achieved is 10.23 J/g, which is sufficient to achieve a perpetual lifetime of WSN-based environmental monitoring systems. |
doi_str_mv | 10.1109/TIE.2018.2863190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2018_2863190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8444478</ieee_id><sourcerecordid>2162809359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f25ab72192912fc4341ef4c64f0d0db531c6eabfa9655e4b4b59fbd8970ada223</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89Ykm-wmx1KqLZT2YMVjyGYnunW7qcm20n9vSsW5DAPvmxkeQveUjCgl6mk9n44YoXLEZJFTRS7QgApRZkpxeYkGhJUyI4QX1-gmxg0hlAsqBmg1xkt_gBavPyFsPbRg-9BYPO0gfBzxzIQDxB4Cdj7g9yYkIEb8Cl1M8xL6Hx--8Hi3axtr-sZ3t-jKmTbC3V8forfn6Xoyyxarl_lkvMgsU7TPHBOmKhlVaWLO8pxTcNwW3JGa1JXIqS3AVM6oQgjgFa-EclUtVUlMbRjLh-jxvHcX_Pc-vag3fh-6dFIzWjBJVC5UosiZssHHGMDpXWi2Jhw1JfqkTSdt-qRN_2lLkYdzpAGAf1zyVKXMfwEz9mky</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162809359</pqid></control><display><type>article</type><title>A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application</title><source>IEEE Electronic Library (IEL)</source><creator>Verma, Gourav ; Sharma, Vidushi</creator><creatorcontrib>Verma, Gourav ; Sharma, Vidushi</creatorcontrib><description><![CDATA[Sensor-based application of environmental monitoring has a huge potential but the only limiting factor is that it is battery operated and thus energy constraint. Energy harvesting is a boon as it helps in environmental monitoring applications. Thermoelectric energy harvesting (TEH) has been explored by researchers and they have proposed the various architecture of TEH systems. The temperature difference is the critical factor for developing TEH system as it directly affects the output energy of the system. In this paper, a novel thermoelectric energy harvester is proposed for wireless sensor network (WSN) based environmental monitoring application, which considers the change in temperature in a cyclic manner. Phase change material (PCM) used is of high latent heat and an intelligent algorithm is proposed that manages the heat energy and maintain the temperature gradient up to 2 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C. This results in heat flow in interchangeable orders during day and night, thus improving the overall output electrical energy. The intelligent algorithm and optimized framework of TEH system considering parameters affecting TEH facilitates the maintenance of <inline-formula><tex-math notation="LaTeX">\Delta T</tex-math></inline-formula>. The system is fabricated and implemented using water as PCM. The overall energy output achieved is 10.23 J/g, which is sufficient to achieve a perpetual lifetime of WSN-based environmental monitoring systems.]]></description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2863190</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Batteries ; Conductivity ; Energy ; Energy harvesting ; Environmental monitoring ; Generators ; Heat ; heat storage ; Heat transfer ; Heat transmission ; Latent heat ; phase change material (PCM) ; Phase change materials ; Power generation ; Remote sensors ; Sensors ; Temperature gradients ; Thermal cycling ; thermoelectric (TE) ; Thermoelectricity ; Wireless sensor networks ; wireless sensor networks (WSNs)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-05, Vol.66 (5), p.3530-3538</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f25ab72192912fc4341ef4c64f0d0db531c6eabfa9655e4b4b59fbd8970ada223</citedby><cites>FETCH-LOGICAL-c291t-f25ab72192912fc4341ef4c64f0d0db531c6eabfa9655e4b4b59fbd8970ada223</cites><orcidid>0000-0002-0094-5202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8444478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8444478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verma, Gourav</creatorcontrib><creatorcontrib>Sharma, Vidushi</creatorcontrib><title>A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description><![CDATA[Sensor-based application of environmental monitoring has a huge potential but the only limiting factor is that it is battery operated and thus energy constraint. Energy harvesting is a boon as it helps in environmental monitoring applications. Thermoelectric energy harvesting (TEH) has been explored by researchers and they have proposed the various architecture of TEH systems. The temperature difference is the critical factor for developing TEH system as it directly affects the output energy of the system. In this paper, a novel thermoelectric energy harvester is proposed for wireless sensor network (WSN) based environmental monitoring application, which considers the change in temperature in a cyclic manner. Phase change material (PCM) used is of high latent heat and an intelligent algorithm is proposed that manages the heat energy and maintain the temperature gradient up to 2 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C. This results in heat flow in interchangeable orders during day and night, thus improving the overall output electrical energy. The intelligent algorithm and optimized framework of TEH system considering parameters affecting TEH facilitates the maintenance of <inline-formula><tex-math notation="LaTeX">\Delta T</tex-math></inline-formula>. The system is fabricated and implemented using water as PCM. The overall energy output achieved is 10.23 J/g, which is sufficient to achieve a perpetual lifetime of WSN-based environmental monitoring systems.]]></description><subject>Algorithms</subject><subject>Batteries</subject><subject>Conductivity</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Environmental monitoring</subject><subject>Generators</subject><subject>Heat</subject><subject>heat storage</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Latent heat</subject><subject>phase change material (PCM)</subject><subject>Phase change materials</subject><subject>Power generation</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>Temperature gradients</subject><subject>Thermal cycling</subject><subject>thermoelectric (TE)</subject><subject>Thermoelectricity</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNs)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89Ykm-wmx1KqLZT2YMVjyGYnunW7qcm20n9vSsW5DAPvmxkeQveUjCgl6mk9n44YoXLEZJFTRS7QgApRZkpxeYkGhJUyI4QX1-gmxg0hlAsqBmg1xkt_gBavPyFsPbRg-9BYPO0gfBzxzIQDxB4Cdj7g9yYkIEb8Cl1M8xL6Hx--8Hi3axtr-sZ3t-jKmTbC3V8forfn6Xoyyxarl_lkvMgsU7TPHBOmKhlVaWLO8pxTcNwW3JGa1JXIqS3AVM6oQgjgFa-EclUtVUlMbRjLh-jxvHcX_Pc-vag3fh-6dFIzWjBJVC5UosiZssHHGMDpXWi2Jhw1JfqkTSdt-qRN_2lLkYdzpAGAf1zyVKXMfwEz9mky</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Verma, Gourav</creator><creator>Sharma, Vidushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0094-5202</orcidid></search><sort><creationdate>20190501</creationdate><title>A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application</title><author>Verma, Gourav ; Sharma, Vidushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f25ab72192912fc4341ef4c64f0d0db531c6eabfa9655e4b4b59fbd8970ada223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Batteries</topic><topic>Conductivity</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Environmental monitoring</topic><topic>Generators</topic><topic>Heat</topic><topic>heat storage</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Latent heat</topic><topic>phase change material (PCM)</topic><topic>Phase change materials</topic><topic>Power generation</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>Temperature gradients</topic><topic>Thermal cycling</topic><topic>thermoelectric (TE)</topic><topic>Thermoelectricity</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Gourav</creatorcontrib><creatorcontrib>Sharma, Vidushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verma, Gourav</au><au>Sharma, Vidushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>66</volume><issue>5</issue><spage>3530</spage><epage>3538</epage><pages>3530-3538</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract><![CDATA[Sensor-based application of environmental monitoring has a huge potential but the only limiting factor is that it is battery operated and thus energy constraint. Energy harvesting is a boon as it helps in environmental monitoring applications. Thermoelectric energy harvesting (TEH) has been explored by researchers and they have proposed the various architecture of TEH systems. The temperature difference is the critical factor for developing TEH system as it directly affects the output energy of the system. In this paper, a novel thermoelectric energy harvester is proposed for wireless sensor network (WSN) based environmental monitoring application, which considers the change in temperature in a cyclic manner. Phase change material (PCM) used is of high latent heat and an intelligent algorithm is proposed that manages the heat energy and maintain the temperature gradient up to 2 <inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula>C. This results in heat flow in interchangeable orders during day and night, thus improving the overall output electrical energy. The intelligent algorithm and optimized framework of TEH system considering parameters affecting TEH facilitates the maintenance of <inline-formula><tex-math notation="LaTeX">\Delta T</tex-math></inline-formula>. The system is fabricated and implemented using water as PCM. The overall energy output achieved is 10.23 J/g, which is sufficient to achieve a perpetual lifetime of WSN-based environmental monitoring systems.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2863190</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0094-5202</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2019-05, Vol.66 (5), p.3530-3538 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2018_2863190 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Batteries Conductivity Energy Energy harvesting Environmental monitoring Generators Heat heat storage Heat transfer Heat transmission Latent heat phase change material (PCM) Phase change materials Power generation Remote sensors Sensors Temperature gradients Thermal cycling thermoelectric (TE) Thermoelectricity Wireless sensor networks wireless sensor networks (WSNs) |
title | A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Thermoelectric%20Energy%20Harvester%20for%20Wireless%20Sensor%20Network%20Application&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Verma,%20Gourav&rft.date=2019-05-01&rft.volume=66&rft.issue=5&rft.spage=3530&rft.epage=3538&rft.pages=3530-3538&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2863190&rft_dat=%3Cproquest_RIE%3E2162809359%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162809359&rft_id=info:pmid/&rft_ieee_id=8444478&rfr_iscdi=true |