Generalized Predictive Control for Industrial Processes Based on Neuron Adaptive Splitting and Merging RBF Neural Network

An adaptive generalized predictive control (GPC) scheme for an industrial process is designed based on a neuron adaptive splitting and merging radial basis function neural network (NASM-RBFNN) in this paper. The NASM-RBFNN is developed to identify the dynamic behaviors of the industrial process. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-02, Vol.66 (2), p.1192-1202
Hauptverfasser: Xie, Shiwen, Xie, Yongfang, Huang, Tingwen, Gui, Weihua, Yang, Chunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An adaptive generalized predictive control (GPC) scheme for an industrial process is designed based on a neuron adaptive splitting and merging radial basis function neural network (NASM-RBFNN) in this paper. The NASM-RBFNN is developed to identify the dynamic behaviors of the industrial process. In order to provide an accurate prediction model for the GPC, a neuron adaptive splitting and merging strategy and a weighted parameters adaptive correction approach are proposed. The neuron adaptive splitting and merging strategy can automatically add or delete the hidden neurons on-line, and the weighted parameters adaptive correction approach can update the weights based on the error of the neural network. The proposed approaches can enable the NASM-RBFNN to be adapted to the time-varying production condition and stochastic disturbance. The stability analysis and convergence of neuron adaptive splitting and merging strategy and weighted parameters adaptive correction approach are given. Finally, the NASM-RBFNN-based GPC (NASM-RBFNN-GPC) is applied to control the iron removal process in the largest zinc hydrometallurgy plant in China. The industrial experiments demonstrate that the NASM-RBFNN-GPC has a satisfactory tracking and control performance.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2018.2835402