Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion

In this paper, we propose a novel event-triggered tracking framework for fast and robust visual tracking in the presence of model drift and occlusion. The resulting tracker not only operates in real time, but also is resilient to tracking failures caused by factors such as fast motion and heavy occl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-03, Vol.66 (3), p.2054-2065
Hauptverfasser: Guan, Mingyang, Wen, Changyun, Shan, Mao, Ng, Cheng-Leong, Zou, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2065
container_issue 3
container_start_page 2054
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Guan, Mingyang
Wen, Changyun
Shan, Mao
Ng, Cheng-Leong
Zou, Ying
description In this paper, we propose a novel event-triggered tracking framework for fast and robust visual tracking in the presence of model drift and occlusion. The resulting tracker not only operates in real time, but also is resilient to tracking failures caused by factors such as fast motion and heavy occlusion. Specifically, the tracker consists of an event-triggered decision model as the core module that coordinates other functional modules, including a short-term tracker, occlusion and drift identification, target redetection, short-term tracker updating, and online discriminative learning for a detector. Each functional module is associated with a defined event that is triggered when the proposed conditions are met. The occlusion and drift identification module is intended to perform online evaluation of the short-term tracking. When a model drift event occurs, the target redetection module is activated by the event-triggered decision model to relocate the target and reinitialize the short-term tracker. The short-term tracker updating is carried out at each frame with a variable learning rate depending on the degree of occlusion. A sampling pool is constructed to store discriminative samples that are used to update the detector model. Extensive experiments on large benchmark datasets demonstrate that the proposed tracking algorithm can effectively detect model drift and restore tracking, and more importantly, it outperforms the state-of-the-art approaches in terms of accuracy, efficiency, and robustness.
doi_str_mv 10.1109/TIE.2018.2835390
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2018_2835390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357461</ieee_id><sourcerecordid>2127986826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d4c3a7065f7206a4c2f88216282f48e88fe426d4e2250986275813eb6c6ee1a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKt3wUvA89Z8b_YotWpBqcjiNaTZSU3dZmuyFfz3bmnxNId5bwYeQteUTCgl1V09n00YoXrCNJe8IidoRKUsi6oS-hSNCCt1QYhQ5-gi5zUhVEgqR-jjHWxb1GEDePYDsS_qFFYrSNDgxXINrsd1su4rxBUOEfefgN8SZIgOcOfxa9dAix9S8D22cVCca3c5dPESnXnbZrg6zjGqH2f19Ll4WTzNp_cvheOc90UjHLclUdKXjCgrHPNaM6qYZl5o0NqDYKoRwJgklVaslJpyWCqnAKjlY3R7OLtN3fcOcm_W3S7F4aNhlJWDoZkaKHKgXOpyTuDNNoWNTb-GErOPZ4Z4Zh_PHOMNys1BCQDwjw_LUijK_wAj72jb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127986826</pqid></control><display><type>article</type><title>Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion</title><source>IEEE Electronic Library (IEL)</source><creator>Guan, Mingyang ; Wen, Changyun ; Shan, Mao ; Ng, Cheng-Leong ; Zou, Ying</creator><creatorcontrib>Guan, Mingyang ; Wen, Changyun ; Shan, Mao ; Ng, Cheng-Leong ; Zou, Ying</creatorcontrib><description>In this paper, we propose a novel event-triggered tracking framework for fast and robust visual tracking in the presence of model drift and occlusion. The resulting tracker not only operates in real time, but also is resilient to tracking failures caused by factors such as fast motion and heavy occlusion. Specifically, the tracker consists of an event-triggered decision model as the core module that coordinates other functional modules, including a short-term tracker, occlusion and drift identification, target redetection, short-term tracker updating, and online discriminative learning for a detector. Each functional module is associated with a defined event that is triggered when the proposed conditions are met. The occlusion and drift identification module is intended to perform online evaluation of the short-term tracking. When a model drift event occurs, the target redetection module is activated by the event-triggered decision model to relocate the target and reinitialize the short-term tracker. The short-term tracker updating is carried out at each frame with a variable learning rate depending on the degree of occlusion. A sampling pool is constructed to store discriminative samples that are used to update the detector model. Extensive experiments on large benchmark datasets demonstrate that the proposed tracking algorithm can effectively detect model drift and restore tracking, and more importantly, it outperforms the state-of-the-art approaches in terms of accuracy, efficiency, and robustness.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2835390</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Correlation ; Detectors ; Distance learning ; Drift ; Drift identification ; event-triggering ; machine learning ; Occlusion ; Optical tracking ; Real time ; redetection ; Robustness ; Short term ; State of the art ; Target recognition ; Target tracking ; visual tracking ; Visualization</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-03, Vol.66 (3), p.2054-2065</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d4c3a7065f7206a4c2f88216282f48e88fe426d4e2250986275813eb6c6ee1a3</citedby><cites>FETCH-LOGICAL-c333t-d4c3a7065f7206a4c2f88216282f48e88fe426d4e2250986275813eb6c6ee1a3</cites><orcidid>0000-0001-9530-360X ; 0000-0002-1410-1449 ; 0000-0001-6895-081X ; 0000-0002-5032-6581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357461$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357461$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guan, Mingyang</creatorcontrib><creatorcontrib>Wen, Changyun</creatorcontrib><creatorcontrib>Shan, Mao</creatorcontrib><creatorcontrib>Ng, Cheng-Leong</creatorcontrib><creatorcontrib>Zou, Ying</creatorcontrib><title>Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, we propose a novel event-triggered tracking framework for fast and robust visual tracking in the presence of model drift and occlusion. The resulting tracker not only operates in real time, but also is resilient to tracking failures caused by factors such as fast motion and heavy occlusion. Specifically, the tracker consists of an event-triggered decision model as the core module that coordinates other functional modules, including a short-term tracker, occlusion and drift identification, target redetection, short-term tracker updating, and online discriminative learning for a detector. Each functional module is associated with a defined event that is triggered when the proposed conditions are met. The occlusion and drift identification module is intended to perform online evaluation of the short-term tracking. When a model drift event occurs, the target redetection module is activated by the event-triggered decision model to relocate the target and reinitialize the short-term tracker. The short-term tracker updating is carried out at each frame with a variable learning rate depending on the degree of occlusion. A sampling pool is constructed to store discriminative samples that are used to update the detector model. Extensive experiments on large benchmark datasets demonstrate that the proposed tracking algorithm can effectively detect model drift and restore tracking, and more importantly, it outperforms the state-of-the-art approaches in terms of accuracy, efficiency, and robustness.</description><subject>Computational modeling</subject><subject>Correlation</subject><subject>Detectors</subject><subject>Distance learning</subject><subject>Drift</subject><subject>Drift identification</subject><subject>event-triggering</subject><subject>machine learning</subject><subject>Occlusion</subject><subject>Optical tracking</subject><subject>Real time</subject><subject>redetection</subject><subject>Robustness</subject><subject>Short term</subject><subject>State of the art</subject><subject>Target recognition</subject><subject>Target tracking</subject><subject>visual tracking</subject><subject>Visualization</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQQIMoWKt3wUvA89Z8b_YotWpBqcjiNaTZSU3dZmuyFfz3bmnxNId5bwYeQteUTCgl1V09n00YoXrCNJe8IidoRKUsi6oS-hSNCCt1QYhQ5-gi5zUhVEgqR-jjHWxb1GEDePYDsS_qFFYrSNDgxXINrsd1su4rxBUOEfefgN8SZIgOcOfxa9dAix9S8D22cVCca3c5dPESnXnbZrg6zjGqH2f19Ll4WTzNp_cvheOc90UjHLclUdKXjCgrHPNaM6qYZl5o0NqDYKoRwJgklVaslJpyWCqnAKjlY3R7OLtN3fcOcm_W3S7F4aNhlJWDoZkaKHKgXOpyTuDNNoWNTb-GErOPZ4Z4Zh_PHOMNys1BCQDwjw_LUijK_wAj72jb</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Guan, Mingyang</creator><creator>Wen, Changyun</creator><creator>Shan, Mao</creator><creator>Ng, Cheng-Leong</creator><creator>Zou, Ying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9530-360X</orcidid><orcidid>https://orcid.org/0000-0002-1410-1449</orcidid><orcidid>https://orcid.org/0000-0001-6895-081X</orcidid><orcidid>https://orcid.org/0000-0002-5032-6581</orcidid></search><sort><creationdate>20190301</creationdate><title>Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion</title><author>Guan, Mingyang ; Wen, Changyun ; Shan, Mao ; Ng, Cheng-Leong ; Zou, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d4c3a7065f7206a4c2f88216282f48e88fe426d4e2250986275813eb6c6ee1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational modeling</topic><topic>Correlation</topic><topic>Detectors</topic><topic>Distance learning</topic><topic>Drift</topic><topic>Drift identification</topic><topic>event-triggering</topic><topic>machine learning</topic><topic>Occlusion</topic><topic>Optical tracking</topic><topic>Real time</topic><topic>redetection</topic><topic>Robustness</topic><topic>Short term</topic><topic>State of the art</topic><topic>Target recognition</topic><topic>Target tracking</topic><topic>visual tracking</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Mingyang</creatorcontrib><creatorcontrib>Wen, Changyun</creatorcontrib><creatorcontrib>Shan, Mao</creatorcontrib><creatorcontrib>Ng, Cheng-Leong</creatorcontrib><creatorcontrib>Zou, Ying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guan, Mingyang</au><au>Wen, Changyun</au><au>Shan, Mao</au><au>Ng, Cheng-Leong</au><au>Zou, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>66</volume><issue>3</issue><spage>2054</spage><epage>2065</epage><pages>2054-2065</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, we propose a novel event-triggered tracking framework for fast and robust visual tracking in the presence of model drift and occlusion. The resulting tracker not only operates in real time, but also is resilient to tracking failures caused by factors such as fast motion and heavy occlusion. Specifically, the tracker consists of an event-triggered decision model as the core module that coordinates other functional modules, including a short-term tracker, occlusion and drift identification, target redetection, short-term tracker updating, and online discriminative learning for a detector. Each functional module is associated with a defined event that is triggered when the proposed conditions are met. The occlusion and drift identification module is intended to perform online evaluation of the short-term tracking. When a model drift event occurs, the target redetection module is activated by the event-triggered decision model to relocate the target and reinitialize the short-term tracker. The short-term tracker updating is carried out at each frame with a variable learning rate depending on the degree of occlusion. A sampling pool is constructed to store discriminative samples that are used to update the detector model. Extensive experiments on large benchmark datasets demonstrate that the proposed tracking algorithm can effectively detect model drift and restore tracking, and more importantly, it outperforms the state-of-the-art approaches in terms of accuracy, efficiency, and robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2835390</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9530-360X</orcidid><orcidid>https://orcid.org/0000-0002-1410-1449</orcidid><orcidid>https://orcid.org/0000-0001-6895-081X</orcidid><orcidid>https://orcid.org/0000-0002-5032-6581</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-03, Vol.66 (3), p.2054-2065
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2018_2835390
source IEEE Electronic Library (IEL)
subjects Computational modeling
Correlation
Detectors
Distance learning
Drift
Drift identification
event-triggering
machine learning
Occlusion
Optical tracking
Real time
redetection
Robustness
Short term
State of the art
Target recognition
Target tracking
visual tracking
Visualization
title Real-Time Event-Triggered Object Tracking in the Presence of Model Drift and Occlusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Event-Triggered%20Object%20Tracking%20in%20the%20Presence%20of%20Model%20Drift%20and%20Occlusion&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Guan,%20Mingyang&rft.date=2019-03-01&rft.volume=66&rft.issue=3&rft.spage=2054&rft.epage=2065&rft.pages=2054-2065&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2835390&rft_dat=%3Cproquest_RIE%3E2127986826%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127986826&rft_id=info:pmid/&rft_ieee_id=8357461&rfr_iscdi=true