Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering

This paper studies a specific low-power wireless technology capable of reaching a long range, namely long range (LoRa). Such a technology can be used by different applications in cities involving many transmitting devices while requiring loose communication constrains. We focus on electricity grids,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2019-02, Vol.66 (2), p.1629-1637
Hauptverfasser: de Castro Tome, Mauricio, Nardelli, Pedro H. J., Alves, Hirley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1637
container_issue 2
container_start_page 1629
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator de Castro Tome, Mauricio
Nardelli, Pedro H. J.
Alves, Hirley
description This paper studies a specific low-power wireless technology capable of reaching a long range, namely long range (LoRa). Such a technology can be used by different applications in cities involving many transmitting devices while requiring loose communication constrains. We focus on electricity grids, where LoRa end-devices are smart meters that send the average power demanded by their respective households during a given period. The successfully decoded data by the LoRa gateway are used by an aggregator to reconstruct the daily households' profiles. We show how the interference from concurrent transmissions from both LoRa and non-LoRa devices negatively affect the communication outage probability and the link effective bit-rate. Besides, we use actual electricity consumption data to compare time-based and event-based sampling strategies, showing the advantages of the latter. We then employ this analysis to assess the gateway range that achieves an average outage probability that leads to a signal reconstruction with a given requirement. We also discuss that, although the proposed analysis focuses on electricity metering, it can be easily extended to any other smart city application with similar requirements, such as water metering or traffic monitoring.
doi_str_mv 10.1109/TIE.2018.2816006
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2018_2816006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8316955</ieee_id><sourcerecordid>2115833676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-c69d8f7567d17a8cccdad659340376585fbf1028fa9d9730c5e871ce640585483</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkMnktpVQt1Ae26jLEzJ0hdTpTk5TSf--UFld3cb5zLnwIXVMyopTou8V0MsoJVaNcUUGIOEEDyrnMtC7UKRqQXKqMkEKco4sYl4TQglM-QJ-zrq2zd9vWgGfdNnvrthDwlw_QQIz4BdK2Cz8R27bEc7taN76t8TwFm6D2ELFv8aQBl4J3Pu3wMyQIPXKJzirbRLg63iH6eJgsxk_Z7PVxOr6fZY4xljIndKkqyYUsqbTKOVfaUnDNCsKk4IpX3xUluaqsLrVkxHFQkjoQBenDQrEhuj3srkP3u4GYzLLbhLZ_aXJKuWJMSNFT5EC50MUYoDLr4Fc27AwlZm_P9PbM3p452usrN4eKB4B_XDEqNOfsD-dnao0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115833676</pqid></control><display><type>article</type><title>Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering</title><source>IEEE Electronic Library (IEL)</source><creator>de Castro Tome, Mauricio ; Nardelli, Pedro H. J. ; Alves, Hirley</creator><creatorcontrib>de Castro Tome, Mauricio ; Nardelli, Pedro H. J. ; Alves, Hirley</creatorcontrib><description>This paper studies a specific low-power wireless technology capable of reaching a long range, namely long range (LoRa). Such a technology can be used by different applications in cities involving many transmitting devices while requiring loose communication constrains. We focus on electricity grids, where LoRa end-devices are smart meters that send the average power demanded by their respective households during a given period. The successfully decoded data by the LoRa gateway are used by an aggregator to reconstruct the daily households' profiles. We show how the interference from concurrent transmissions from both LoRa and non-LoRa devices negatively affect the communication outage probability and the link effective bit-rate. Besides, we use actual electricity consumption data to compare time-based and event-based sampling strategies, showing the advantages of the latter. We then employ this analysis to assess the gateway range that achieves an average outage probability that leads to a signal reconstruction with a given requirement. We also discuss that, although the proposed analysis focuses on electricity metering, it can be easily extended to any other smart city application with similar requirements, such as water metering or traffic monitoring.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2816006</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aggregates ; Electric power grids ; Electricity ; Electricity consumption ; Electricity meters ; Electronic devices ; Event-based sampling ; Geometry ; Households ; Interference ; Logic gates ; low-power wide-area (LPWA) wireless networks ; Probability ; Sampling ; Signal reconstruction ; stochastic geometry ; Stochastic processes ; Water meters ; Wireless networks</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-02, Vol.66 (2), p.1629-1637</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-c69d8f7567d17a8cccdad659340376585fbf1028fa9d9730c5e871ce640585483</citedby><cites>FETCH-LOGICAL-c333t-c69d8f7567d17a8cccdad659340376585fbf1028fa9d9730c5e871ce640585483</cites><orcidid>0000-0002-8689-5313 ; 0000-0002-7398-1802 ; 0000-0001-9382-2334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8316955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8316955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Castro Tome, Mauricio</creatorcontrib><creatorcontrib>Nardelli, Pedro H. J.</creatorcontrib><creatorcontrib>Alves, Hirley</creatorcontrib><title>Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper studies a specific low-power wireless technology capable of reaching a long range, namely long range (LoRa). Such a technology can be used by different applications in cities involving many transmitting devices while requiring loose communication constrains. We focus on electricity grids, where LoRa end-devices are smart meters that send the average power demanded by their respective households during a given period. The successfully decoded data by the LoRa gateway are used by an aggregator to reconstruct the daily households' profiles. We show how the interference from concurrent transmissions from both LoRa and non-LoRa devices negatively affect the communication outage probability and the link effective bit-rate. Besides, we use actual electricity consumption data to compare time-based and event-based sampling strategies, showing the advantages of the latter. We then employ this analysis to assess the gateway range that achieves an average outage probability that leads to a signal reconstruction with a given requirement. We also discuss that, although the proposed analysis focuses on electricity metering, it can be easily extended to any other smart city application with similar requirements, such as water metering or traffic monitoring.</description><subject>Aggregates</subject><subject>Electric power grids</subject><subject>Electricity</subject><subject>Electricity consumption</subject><subject>Electricity meters</subject><subject>Electronic devices</subject><subject>Event-based sampling</subject><subject>Geometry</subject><subject>Households</subject><subject>Interference</subject><subject>Logic gates</subject><subject>low-power wide-area (LPWA) wireless networks</subject><subject>Probability</subject><subject>Sampling</subject><subject>Signal reconstruction</subject><subject>stochastic geometry</subject><subject>Stochastic processes</subject><subject>Water meters</subject><subject>Wireless networks</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRkMnktpVQt1Ae26jLEzJ0hdTpTk5TSf--UFld3cb5zLnwIXVMyopTou8V0MsoJVaNcUUGIOEEDyrnMtC7UKRqQXKqMkEKco4sYl4TQglM-QJ-zrq2zd9vWgGfdNnvrthDwlw_QQIz4BdK2Cz8R27bEc7taN76t8TwFm6D2ELFv8aQBl4J3Pu3wMyQIPXKJzirbRLg63iH6eJgsxk_Z7PVxOr6fZY4xljIndKkqyYUsqbTKOVfaUnDNCsKk4IpX3xUluaqsLrVkxHFQkjoQBenDQrEhuj3srkP3u4GYzLLbhLZ_aXJKuWJMSNFT5EC50MUYoDLr4Fc27AwlZm_P9PbM3p452usrN4eKB4B_XDEqNOfsD-dnao0</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>de Castro Tome, Mauricio</creator><creator>Nardelli, Pedro H. J.</creator><creator>Alves, Hirley</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8689-5313</orcidid><orcidid>https://orcid.org/0000-0002-7398-1802</orcidid><orcidid>https://orcid.org/0000-0001-9382-2334</orcidid></search><sort><creationdate>20190201</creationdate><title>Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering</title><author>de Castro Tome, Mauricio ; Nardelli, Pedro H. J. ; Alves, Hirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-c69d8f7567d17a8cccdad659340376585fbf1028fa9d9730c5e871ce640585483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Electric power grids</topic><topic>Electricity</topic><topic>Electricity consumption</topic><topic>Electricity meters</topic><topic>Electronic devices</topic><topic>Event-based sampling</topic><topic>Geometry</topic><topic>Households</topic><topic>Interference</topic><topic>Logic gates</topic><topic>low-power wide-area (LPWA) wireless networks</topic><topic>Probability</topic><topic>Sampling</topic><topic>Signal reconstruction</topic><topic>stochastic geometry</topic><topic>Stochastic processes</topic><topic>Water meters</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Castro Tome, Mauricio</creatorcontrib><creatorcontrib>Nardelli, Pedro H. J.</creatorcontrib><creatorcontrib>Alves, Hirley</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Castro Tome, Mauricio</au><au>Nardelli, Pedro H. J.</au><au>Alves, Hirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>66</volume><issue>2</issue><spage>1629</spage><epage>1637</epage><pages>1629-1637</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper studies a specific low-power wireless technology capable of reaching a long range, namely long range (LoRa). Such a technology can be used by different applications in cities involving many transmitting devices while requiring loose communication constrains. We focus on electricity grids, where LoRa end-devices are smart meters that send the average power demanded by their respective households during a given period. The successfully decoded data by the LoRa gateway are used by an aggregator to reconstruct the daily households' profiles. We show how the interference from concurrent transmissions from both LoRa and non-LoRa devices negatively affect the communication outage probability and the link effective bit-rate. Besides, we use actual electricity consumption data to compare time-based and event-based sampling strategies, showing the advantages of the latter. We then employ this analysis to assess the gateway range that achieves an average outage probability that leads to a signal reconstruction with a given requirement. We also discuss that, although the proposed analysis focuses on electricity metering, it can be easily extended to any other smart city application with similar requirements, such as water metering or traffic monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2816006</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8689-5313</orcidid><orcidid>https://orcid.org/0000-0002-7398-1802</orcidid><orcidid>https://orcid.org/0000-0001-9382-2334</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-02, Vol.66 (2), p.1629-1637
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2018_2816006
source IEEE Electronic Library (IEL)
subjects Aggregates
Electric power grids
Electricity
Electricity consumption
Electricity meters
Electronic devices
Event-based sampling
Geometry
Households
Interference
Logic gates
low-power wide-area (LPWA) wireless networks
Probability
Sampling
Signal reconstruction
stochastic geometry
Stochastic processes
Water meters
Wireless networks
title Long-Range Low-Power Wireless Networks and Sampling Strategies in Electricity Metering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Range%20Low-Power%20Wireless%20Networks%20and%20Sampling%20Strategies%20in%20Electricity%20Metering&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=de%20Castro%20Tome,%20Mauricio&rft.date=2019-02-01&rft.volume=66&rft.issue=2&rft.spage=1629&rft.epage=1637&rft.pages=1629-1637&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2816006&rft_dat=%3Cproquest_RIE%3E2115833676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115833676&rft_id=info:pmid/&rft_ieee_id=8316955&rfr_iscdi=true