Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems
This paper proposes a new adaptive-robust control (ARC) strategy for a tracking control problem of a class of uncertain Euler-Lagrange systems. The proposed adaptive-robust time-delay control (ARTDC) amalgamates the ARC strategy with the time-delay control (TDC). It comprises three parts: a time-del...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-09, Vol.64 (9), p.7109-7119 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7119 |
---|---|
container_issue | 9 |
container_start_page | 7109 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Roy, Spandan Kar, Indra Narayan Lee, Jinoh Maolin Jin |
description | This paper proposes a new adaptive-robust control (ARC) strategy for a tracking control problem of a class of uncertain Euler-Lagrange systems. The proposed adaptive-robust time-delay control (ARTDC) amalgamates the ARC strategy with the time-delay control (TDC). It comprises three parts: a time-delay estimation part, a desired dynamics injection part, and an adaptive-robust part. The main feature of the proposed ARTDC is that it does not involve any threshold value in its adaptive law; thus, it allows the switching gain to increase or decrease whenever the error trajectories move away or close to the switching surface, respectively. Thus, compared with the existing ARC schemes, ARTDC is able to alleviate the over- and underestimation problems of the switching gain. Moreover, the stability analysis of ARTDC provides an upper bound for the selection of sampling interval and its relation with controller gains. The proposed ARTDC shows improved tracking performance compared with the TDC and the existing adaptive sliding-mode control in simulations as well as in experiments with a multiple-degree-of-freedom system. |
doi_str_mv | 10.1109/TIE.2017.2688959 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2017_2688959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7889009</ieee_id><sourcerecordid>2174430257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-75d2fb9aa7519218e8cb29e341fd35264806eacfb2fa2318fa6103b3623a0cce3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWD_2gpuA69SXZDKZLMtYtVAQarsOmelLmTKd1GQq9N87pcXVW9xz74NDyBOHMedgXpez6VgA12ORF4VR5oqMuFKaGZMV12QEQhcMIMtvyV1KWwCeKa5GZDFZu33f_CJbhOqQerpsdsjesHVHWoauj6GlPkTqaNm6lGjwdNXVGHvXdHR6aDGyudtE122Qfh9Tj7v0QG68axM-Xu49Wb1Pl-Unm399zMrJnNXC8J5ptRa-Ms5pxY3gBRZ1JQzKjPu1VCLPCsjR1b4S3gnJC-9yDrKSuZAO6hrlPXk57-5j-Dlg6u02HGI3vLSC6yyTIJQeKDhTdQwpRfR2H5udi0fLwZ7M2cGcPZmzF3ND5flcaRDxH9dDCGDkH6-8aSI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174430257</pqid></control><display><type>article</type><title>Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Roy, Spandan ; Kar, Indra Narayan ; Lee, Jinoh ; Maolin Jin</creator><creatorcontrib>Roy, Spandan ; Kar, Indra Narayan ; Lee, Jinoh ; Maolin Jin</creatorcontrib><description>This paper proposes a new adaptive-robust control (ARC) strategy for a tracking control problem of a class of uncertain Euler-Lagrange systems. The proposed adaptive-robust time-delay control (ARTDC) amalgamates the ARC strategy with the time-delay control (TDC). It comprises three parts: a time-delay estimation part, a desired dynamics injection part, and an adaptive-robust part. The main feature of the proposed ARTDC is that it does not involve any threshold value in its adaptive law; thus, it allows the switching gain to increase or decrease whenever the error trajectories move away or close to the switching surface, respectively. Thus, compared with the existing ARC schemes, ARTDC is able to alleviate the over- and underestimation problems of the switching gain. Moreover, the stability analysis of ARTDC provides an upper bound for the selection of sampling interval and its relation with controller gains. The proposed ARTDC shows improved tracking performance compared with the TDC and the existing adaptive sliding-mode control in simulations as well as in experiments with a multiple-degree-of-freedom system.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2688959</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive-robust control (ARC) ; Delay ; Euler–Lagrange systems ; Razumikhin theorem ; Robust control ; Robustness ; Sliding mode control ; Stability analysis ; Switches ; Switching ; time-delay control (TDC) ; Tracking control ; Trajectory ; Uncertainty ; Upper bounds</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-09, Vol.64 (9), p.7109-7119</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-75d2fb9aa7519218e8cb29e341fd35264806eacfb2fa2318fa6103b3623a0cce3</citedby><cites>FETCH-LOGICAL-c291t-75d2fb9aa7519218e8cb29e341fd35264806eacfb2fa2318fa6103b3623a0cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7889009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7889009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Spandan</creatorcontrib><creatorcontrib>Kar, Indra Narayan</creatorcontrib><creatorcontrib>Lee, Jinoh</creatorcontrib><creatorcontrib>Maolin Jin</creatorcontrib><title>Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper proposes a new adaptive-robust control (ARC) strategy for a tracking control problem of a class of uncertain Euler-Lagrange systems. The proposed adaptive-robust time-delay control (ARTDC) amalgamates the ARC strategy with the time-delay control (TDC). It comprises three parts: a time-delay estimation part, a desired dynamics injection part, and an adaptive-robust part. The main feature of the proposed ARTDC is that it does not involve any threshold value in its adaptive law; thus, it allows the switching gain to increase or decrease whenever the error trajectories move away or close to the switching surface, respectively. Thus, compared with the existing ARC schemes, ARTDC is able to alleviate the over- and underestimation problems of the switching gain. Moreover, the stability analysis of ARTDC provides an upper bound for the selection of sampling interval and its relation with controller gains. The proposed ARTDC shows improved tracking performance compared with the TDC and the existing adaptive sliding-mode control in simulations as well as in experiments with a multiple-degree-of-freedom system.</description><subject>Adaptive control</subject><subject>Adaptive-robust control (ARC)</subject><subject>Delay</subject><subject>Euler–Lagrange systems</subject><subject>Razumikhin theorem</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Switches</subject><subject>Switching</subject><subject>time-delay control (TDC)</subject><subject>Tracking control</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Upper bounds</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWD_2gpuA69SXZDKZLMtYtVAQarsOmelLmTKd1GQq9N87pcXVW9xz74NDyBOHMedgXpez6VgA12ORF4VR5oqMuFKaGZMV12QEQhcMIMtvyV1KWwCeKa5GZDFZu33f_CJbhOqQerpsdsjesHVHWoauj6GlPkTqaNm6lGjwdNXVGHvXdHR6aDGyudtE122Qfh9Tj7v0QG68axM-Xu49Wb1Pl-Unm399zMrJnNXC8J5ptRa-Ms5pxY3gBRZ1JQzKjPu1VCLPCsjR1b4S3gnJC-9yDrKSuZAO6hrlPXk57-5j-Dlg6u02HGI3vLSC6yyTIJQeKDhTdQwpRfR2H5udi0fLwZ7M2cGcPZmzF3ND5flcaRDxH9dDCGDkH6-8aSI</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Roy, Spandan</creator><creator>Kar, Indra Narayan</creator><creator>Lee, Jinoh</creator><creator>Maolin Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201709</creationdate><title>Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems</title><author>Roy, Spandan ; Kar, Indra Narayan ; Lee, Jinoh ; Maolin Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-75d2fb9aa7519218e8cb29e341fd35264806eacfb2fa2318fa6103b3623a0cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Adaptive-robust control (ARC)</topic><topic>Delay</topic><topic>Euler–Lagrange systems</topic><topic>Razumikhin theorem</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Switches</topic><topic>Switching</topic><topic>time-delay control (TDC)</topic><topic>Tracking control</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Spandan</creatorcontrib><creatorcontrib>Kar, Indra Narayan</creatorcontrib><creatorcontrib>Lee, Jinoh</creatorcontrib><creatorcontrib>Maolin Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Spandan</au><au>Kar, Indra Narayan</au><au>Lee, Jinoh</au><au>Maolin Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-09</date><risdate>2017</risdate><volume>64</volume><issue>9</issue><spage>7109</spage><epage>7119</epage><pages>7109-7119</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper proposes a new adaptive-robust control (ARC) strategy for a tracking control problem of a class of uncertain Euler-Lagrange systems. The proposed adaptive-robust time-delay control (ARTDC) amalgamates the ARC strategy with the time-delay control (TDC). It comprises three parts: a time-delay estimation part, a desired dynamics injection part, and an adaptive-robust part. The main feature of the proposed ARTDC is that it does not involve any threshold value in its adaptive law; thus, it allows the switching gain to increase or decrease whenever the error trajectories move away or close to the switching surface, respectively. Thus, compared with the existing ARC schemes, ARTDC is able to alleviate the over- and underestimation problems of the switching gain. Moreover, the stability analysis of ARTDC provides an upper bound for the selection of sampling interval and its relation with controller gains. The proposed ARTDC shows improved tracking performance compared with the TDC and the existing adaptive sliding-mode control in simulations as well as in experiments with a multiple-degree-of-freedom system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2688959</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-09, Vol.64 (9), p.7109-7119 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2017_2688959 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive-robust control (ARC) Delay Euler–Lagrange systems Razumikhin theorem Robust control Robustness Sliding mode control Stability analysis Switches Switching time-delay control (TDC) Tracking control Trajectory Uncertainty Upper bounds |
title | Adaptive-Robust Time-Delay Control for a Class of Uncertain Euler-Lagrange Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive-Robust%20Time-Delay%20Control%20for%20a%20Class%20of%20Uncertain%20Euler-Lagrange%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Roy,%20Spandan&rft.date=2017-09&rft.volume=64&rft.issue=9&rft.spage=7109&rft.epage=7119&rft.pages=7109-7119&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2688959&rft_dat=%3Cproquest_RIE%3E2174430257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174430257&rft_id=info:pmid/&rft_ieee_id=7889009&rfr_iscdi=true |