Deadbeat Model-Predictive Torque Control With Discrete Space-Vector Modulation for PMSM Drives
This paper proposes an alternative strategy of finite-control-set model-predictive torque control (MPTC) to reduce the computational burden and the torque ripple and decouple the switching frequency from the controller sampling time. An improved discrete space-vector modulation (DSVM) technique is u...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-05, Vol.64 (5), p.3537-3547 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an alternative strategy of finite-control-set model-predictive torque control (MPTC) to reduce the computational burden and the torque ripple and decouple the switching frequency from the controller sampling time. An improved discrete space-vector modulation (DSVM) technique is utilized to synthesize a large number of virtual voltage vectors. The deadbeat (DB) technique is used to optimize the voltage vector selection process, avoiding enumerating all the feasible voltage vectors. With this proposed method, only three voltage vectors are tested in each predictive step. Based on the improved DSVM method, the three candidate voltage vectors are calculated by using a novel algebraic way. This new strategy has the benefits of both the MPTC method and the DB method. The effectiveness of the proposed strategy is validated based on a test bench. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2017.2652338 |