A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution
This paper presents a generic electrothermal model for Li-ion battery. The model is developed with the objective to simplify the parameter identification procedure, while representing adequately the thermal effects on the battery performance. Most of the well-accepted electrothermal Li-ion battery m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-02, Vol.64 (2), p.998-1008 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1008 |
---|---|
container_issue | 2 |
container_start_page | 998 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Motapon, Souleman Njoya Lupien-Bedard, Alexandre Dessaint, Louis-A Fortin-Blanchette, Handy Al-Haddad, Kamal |
description | This paper presents a generic electrothermal model for Li-ion battery. The model is developed with the objective to simplify the parameter identification procedure, while representing adequately the thermal effects on the battery performance. Most of the well-accepted electrothermal Li-ion battery models require in-depth and proprietary battery data or dedicated test environments for parameter identification. The dedicated test bench usually involves expensive thermal test chambers, calorimeters, and temperatures sensors, and challenges associated with their installations. This makes the electrical and thermal simulation of Li-ion batteries difficult to achieve. This paper proposes a generic electrothermal model with a simpler parameter identification process. The parameters identification process is solely based on datasheet discharge curves and simple experiments at room temperature. The model is validated experimentally using a 12 V 40 Ah LiFePO 4 battery module. The performance of the model is tested with constant current discharges, constant current-constant voltage charges, as well as with a Simplified Federal Urban Driving Schedule dynamic driving cycle, at different operating temperatures. As expected, the simulation results show an error within ±1% and ±1.3% compared to experimental results, for both steady and dynamic states, respectively. |
doi_str_mv | 10.1109/TIE.2016.2618363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2016_2618363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7592876</ieee_id><sourcerecordid>1858791236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-caf7330389c968aae52faa1c8bcdac2763a0d54d5b6e46d1f3df50a26f878f313</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NGl6nKPOwUSQeQ5Z-oId2VLTdLD_3taJp_cOn-_3PT4I3VMyo5SUT5tVNWOEyhmTVHHJL9CEClFkZZmrSzQhrFAZIbm8RjddtyOE5oKKCWrmeAkHiI3FlQebYkhfEPfG43WTNeGAn01KEE_4LdTgsQsRf5i2qXF1NL43aUSCwwvwHm9g30I0qY_wu4c41FTH4PsRu0VXzvgO7v7mFH2-VJvFa7Z-X64W83VmWUlTZo0rOCdclbaUyhgQzBlDrdra2lhWSG5ILfJabCXksqaO104Qw6RThXKc8il6PPe2MXz30CW9C308DCc1VUIVJWWDnikiZ8rG0HURnG5jszfxpCnRo1A9CNWjUP0ndIg8nCMNAPzjhSiZGr76Ab4kcmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858791236</pqid></control><display><type>article</type><title>A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution</title><source>IEEE Xplore</source><creator>Motapon, Souleman Njoya ; Lupien-Bedard, Alexandre ; Dessaint, Louis-A ; Fortin-Blanchette, Handy ; Al-Haddad, Kamal</creator><creatorcontrib>Motapon, Souleman Njoya ; Lupien-Bedard, Alexandre ; Dessaint, Louis-A ; Fortin-Blanchette, Handy ; Al-Haddad, Kamal</creatorcontrib><description>This paper presents a generic electrothermal model for Li-ion battery. The model is developed with the objective to simplify the parameter identification procedure, while representing adequately the thermal effects on the battery performance. Most of the well-accepted electrothermal Li-ion battery models require in-depth and proprietary battery data or dedicated test environments for parameter identification. The dedicated test bench usually involves expensive thermal test chambers, calorimeters, and temperatures sensors, and challenges associated with their installations. This makes the electrical and thermal simulation of Li-ion batteries difficult to achieve. This paper proposes a generic electrothermal model with a simpler parameter identification process. The parameters identification process is solely based on datasheet discharge curves and simple experiments at room temperature. The model is validated experimentally using a 12 V 40 Ah LiFePO 4 battery module. The performance of the model is tested with constant current discharges, constant current-constant voltage charges, as well as with a Simplified Federal Urban Driving Schedule dynamic driving cycle, at different operating temperatures. As expected, the simulation results show an error within ±1% and ±1.3% compared to experimental results, for both steady and dynamic states, respectively.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2016.2618363</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Charging ; constant current–constant voltage (CC–CV) ; Data models ; Discharge ; Discharges (electric) ; electrical simulation ; electrothermal modeling ; generic battery model ; Integrated circuit modeling ; least-square algorithm ; Li-ion batteries ; Lithium-ion batteries ; Mathematical model ; Mathematical models ; Model testing ; Operating temperature ; Parameter identification ; Process parameters ; Rechargeable batteries ; Room temperature ; Temperature effects ; Test chambers ; Thermal resistance ; Thermal simulation</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-02, Vol.64 (2), p.998-1008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-caf7330389c968aae52faa1c8bcdac2763a0d54d5b6e46d1f3df50a26f878f313</citedby><cites>FETCH-LOGICAL-c291t-caf7330389c968aae52faa1c8bcdac2763a0d54d5b6e46d1f3df50a26f878f313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7592876$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7592876$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Motapon, Souleman Njoya</creatorcontrib><creatorcontrib>Lupien-Bedard, Alexandre</creatorcontrib><creatorcontrib>Dessaint, Louis-A</creatorcontrib><creatorcontrib>Fortin-Blanchette, Handy</creatorcontrib><creatorcontrib>Al-Haddad, Kamal</creatorcontrib><title>A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper presents a generic electrothermal model for Li-ion battery. The model is developed with the objective to simplify the parameter identification procedure, while representing adequately the thermal effects on the battery performance. Most of the well-accepted electrothermal Li-ion battery models require in-depth and proprietary battery data or dedicated test environments for parameter identification. The dedicated test bench usually involves expensive thermal test chambers, calorimeters, and temperatures sensors, and challenges associated with their installations. This makes the electrical and thermal simulation of Li-ion batteries difficult to achieve. This paper proposes a generic electrothermal model with a simpler parameter identification process. The parameters identification process is solely based on datasheet discharge curves and simple experiments at room temperature. The model is validated experimentally using a 12 V 40 Ah LiFePO 4 battery module. The performance of the model is tested with constant current discharges, constant current-constant voltage charges, as well as with a Simplified Federal Urban Driving Schedule dynamic driving cycle, at different operating temperatures. As expected, the simulation results show an error within ±1% and ±1.3% compared to experimental results, for both steady and dynamic states, respectively.</description><subject>Batteries</subject><subject>Charging</subject><subject>constant current–constant voltage (CC–CV)</subject><subject>Data models</subject><subject>Discharge</subject><subject>Discharges (electric)</subject><subject>electrical simulation</subject><subject>electrothermal modeling</subject><subject>generic battery model</subject><subject>Integrated circuit modeling</subject><subject>least-square algorithm</subject><subject>Li-ion batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Model testing</subject><subject>Operating temperature</subject><subject>Parameter identification</subject><subject>Process parameters</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Temperature effects</subject><subject>Test chambers</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4MoOKd3wUvAc2d-NGl6nKPOwUSQeQ5Z-oId2VLTdLD_3taJp_cOn-_3PT4I3VMyo5SUT5tVNWOEyhmTVHHJL9CEClFkZZmrSzQhrFAZIbm8RjddtyOE5oKKCWrmeAkHiI3FlQebYkhfEPfG43WTNeGAn01KEE_4LdTgsQsRf5i2qXF1NL43aUSCwwvwHm9g30I0qY_wu4c41FTH4PsRu0VXzvgO7v7mFH2-VJvFa7Z-X64W83VmWUlTZo0rOCdclbaUyhgQzBlDrdra2lhWSG5ILfJabCXksqaO104Qw6RThXKc8il6PPe2MXz30CW9C308DCc1VUIVJWWDnikiZ8rG0HURnG5jszfxpCnRo1A9CNWjUP0ndIg8nCMNAPzjhSiZGr76Ab4kcmg</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Motapon, Souleman Njoya</creator><creator>Lupien-Bedard, Alexandre</creator><creator>Dessaint, Louis-A</creator><creator>Fortin-Blanchette, Handy</creator><creator>Al-Haddad, Kamal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201702</creationdate><title>A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution</title><author>Motapon, Souleman Njoya ; Lupien-Bedard, Alexandre ; Dessaint, Louis-A ; Fortin-Blanchette, Handy ; Al-Haddad, Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-caf7330389c968aae52faa1c8bcdac2763a0d54d5b6e46d1f3df50a26f878f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Batteries</topic><topic>Charging</topic><topic>constant current–constant voltage (CC–CV)</topic><topic>Data models</topic><topic>Discharge</topic><topic>Discharges (electric)</topic><topic>electrical simulation</topic><topic>electrothermal modeling</topic><topic>generic battery model</topic><topic>Integrated circuit modeling</topic><topic>least-square algorithm</topic><topic>Li-ion batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Model testing</topic><topic>Operating temperature</topic><topic>Parameter identification</topic><topic>Process parameters</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Temperature effects</topic><topic>Test chambers</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Motapon, Souleman Njoya</creatorcontrib><creatorcontrib>Lupien-Bedard, Alexandre</creatorcontrib><creatorcontrib>Dessaint, Louis-A</creatorcontrib><creatorcontrib>Fortin-Blanchette, Handy</creatorcontrib><creatorcontrib>Al-Haddad, Kamal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Motapon, Souleman Njoya</au><au>Lupien-Bedard, Alexandre</au><au>Dessaint, Louis-A</au><au>Fortin-Blanchette, Handy</au><au>Al-Haddad, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-02</date><risdate>2017</risdate><volume>64</volume><issue>2</issue><spage>998</spage><epage>1008</epage><pages>998-1008</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper presents a generic electrothermal model for Li-ion battery. The model is developed with the objective to simplify the parameter identification procedure, while representing adequately the thermal effects on the battery performance. Most of the well-accepted electrothermal Li-ion battery models require in-depth and proprietary battery data or dedicated test environments for parameter identification. The dedicated test bench usually involves expensive thermal test chambers, calorimeters, and temperatures sensors, and challenges associated with their installations. This makes the electrical and thermal simulation of Li-ion batteries difficult to achieve. This paper proposes a generic electrothermal model with a simpler parameter identification process. The parameters identification process is solely based on datasheet discharge curves and simple experiments at room temperature. The model is validated experimentally using a 12 V 40 Ah LiFePO 4 battery module. The performance of the model is tested with constant current discharges, constant current-constant voltage charges, as well as with a Simplified Federal Urban Driving Schedule dynamic driving cycle, at different operating temperatures. As expected, the simulation results show an error within ±1% and ±1.3% compared to experimental results, for both steady and dynamic states, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2016.2618363</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-02, Vol.64 (2), p.998-1008 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2016_2618363 |
source | IEEE Xplore |
subjects | Batteries Charging constant current–constant voltage (CC–CV) Data models Discharge Discharges (electric) electrical simulation electrothermal modeling generic battery model Integrated circuit modeling least-square algorithm Li-ion batteries Lithium-ion batteries Mathematical model Mathematical models Model testing Operating temperature Parameter identification Process parameters Rechargeable batteries Room temperature Temperature effects Test chambers Thermal resistance Thermal simulation |
title | A Generic Electrothermal Li-ion Battery Model for Rapid Evaluation of Cell Temperature Temporal Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generic%20Electrothermal%20Li-ion%20Battery%20Model%20for%20Rapid%20Evaluation%20of%20Cell%20Temperature%20Temporal%20Evolution&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Motapon,%20Souleman%20Njoya&rft.date=2017-02&rft.volume=64&rft.issue=2&rft.spage=998&rft.epage=1008&rft.pages=998-1008&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2016.2618363&rft_dat=%3Cproquest_RIE%3E1858791236%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858791236&rft_id=info:pmid/&rft_ieee_id=7592876&rfr_iscdi=true |