Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity

This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-01, Vol.64 (1), p.527-534
Hauptverfasser: Precup, Radu-Emil, David, Radu-Codrut, Petriu, Emil M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 1
container_start_page 527
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Precup, Radu-Emil
David, Radu-Codrut
Petriu, Emil M.
description This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The process models have second-order dynamics with an integral component, variable parameters, a saturation, and dead-zone static nonlinearity. The sensitivity analysis employs output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The GWO algorithm is used in solving the optimization problems, where the objective functions include the output sensitivity functions. GWO's motivation is based on its low-computational cost. The tuning approach is validated in an experimental case study of a position control for a laboratory nonlinear servo system, and TSK PI-FCs with a reduced process small time constant sensitivity are offered.
doi_str_mv 10.1109/TIE.2016.2607698
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2016_2607698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7563386</ieee_id><sourcerecordid>1848276576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ea8e4e62f4a44c046b82c7aa719f337aeace329dc04d27a8178b0e5f24114ef03</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSpkl6nGObg8HETXYsWfs6M9pmJqnQ_fV2TDy9w_t-v_f4EHqkZEQpSV82i-mIESpGTBApUnWFBjRJZJSmXF2jAWFSRYRwcYvuvD8QQnlCkwHazx10eGurEq-OwdTmBA6Pq711JnzV0av2UOBN25hmj22JZ-3p1OGJbYKzFV53PkDt8bZn8QcUbd7D79rpGoIzOV5D400wPyZ09-im1JWHh785RJ-z6WbyFi1X88VkvIzyWNAQgVbAQbCSa87z_t2dYrnUWtK0jGOpQecQs7ToVwWTWlGpdgSSknFKOZQkHqLnS-_R2e8WfMgOtnVNfzKjiismRSJFT5ELlTvrvYMyOzpTa9dllGRnnVmvMzvrzP509pGnS8QAwD8uExHHSsS_S6hx_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848276576</pqid></control><display><type>article</type><title>Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity</title><source>IEEE Electronic Library (IEL)</source><creator>Precup, Radu-Emil ; David, Radu-Codrut ; Petriu, Emil M.</creator><creatorcontrib>Precup, Radu-Emil ; David, Radu-Codrut ; Petriu, Emil M.</creatorcontrib><description>This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The process models have second-order dynamics with an integral component, variable parameters, a saturation, and dead-zone static nonlinearity. The sensitivity analysis employs output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The GWO algorithm is used in solving the optimization problems, where the objective functions include the output sensitivity functions. GWO's motivation is based on its low-computational cost. The tuning approach is validated in an experimental case study of a position control for a laboratory nonlinear servo system, and TSK PI-FCs with a reduced process small time constant sensitivity are offered.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2016.2607698</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Control systems ; Experimental results ; Fuzzy control ; fuzzy control systems (CSs) ; Fuzzy systems ; Grey Wolf Optimizer (GWO) ; Heuristic algorithms ; Nonlinearity ; Optimization ; Parameter sensitivity ; parametric sensitivity ; Process control ; Proportional integral ; Sensitivity ; Sensitivity analysis ; servo systems ; Servocontrol ; Servomotors ; Time constant ; Tuning</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-01, Vol.64 (1), p.527-534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ea8e4e62f4a44c046b82c7aa719f337aeace329dc04d27a8178b0e5f24114ef03</citedby><cites>FETCH-LOGICAL-c361t-ea8e4e62f4a44c046b82c7aa719f337aeace329dc04d27a8178b0e5f24114ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7563386$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7563386$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Precup, Radu-Emil</creatorcontrib><creatorcontrib>David, Radu-Codrut</creatorcontrib><creatorcontrib>Petriu, Emil M.</creatorcontrib><title>Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The process models have second-order dynamics with an integral component, variable parameters, a saturation, and dead-zone static nonlinearity. The sensitivity analysis employs output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The GWO algorithm is used in solving the optimization problems, where the objective functions include the output sensitivity functions. GWO's motivation is based on its low-computational cost. The tuning approach is validated in an experimental case study of a position control for a laboratory nonlinear servo system, and TSK PI-FCs with a reduced process small time constant sensitivity are offered.</description><subject>Algorithms</subject><subject>Control systems</subject><subject>Experimental results</subject><subject>Fuzzy control</subject><subject>fuzzy control systems (CSs)</subject><subject>Fuzzy systems</subject><subject>Grey Wolf Optimizer (GWO)</subject><subject>Heuristic algorithms</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Parameter sensitivity</subject><subject>parametric sensitivity</subject><subject>Process control</subject><subject>Proportional integral</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>servo systems</subject><subject>Servocontrol</subject><subject>Servomotors</subject><subject>Time constant</subject><subject>Tuning</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvAc2eSpkl6nGObg8HETXYsWfs6M9pmJqnQ_fV2TDy9w_t-v_f4EHqkZEQpSV82i-mIESpGTBApUnWFBjRJZJSmXF2jAWFSRYRwcYvuvD8QQnlCkwHazx10eGurEq-OwdTmBA6Pq711JnzV0av2UOBN25hmj22JZ-3p1OGJbYKzFV53PkDt8bZn8QcUbd7D79rpGoIzOV5D400wPyZ09-im1JWHh785RJ-z6WbyFi1X88VkvIzyWNAQgVbAQbCSa87z_t2dYrnUWtK0jGOpQecQs7ToVwWTWlGpdgSSknFKOZQkHqLnS-_R2e8WfMgOtnVNfzKjiismRSJFT5ELlTvrvYMyOzpTa9dllGRnnVmvMzvrzP509pGnS8QAwD8uExHHSsS_S6hx_Q</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Precup, Radu-Emil</creator><creator>David, Radu-Codrut</creator><creator>Petriu, Emil M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity</title><author>Precup, Radu-Emil ; David, Radu-Codrut ; Petriu, Emil M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ea8e4e62f4a44c046b82c7aa719f337aeace329dc04d27a8178b0e5f24114ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Control systems</topic><topic>Experimental results</topic><topic>Fuzzy control</topic><topic>fuzzy control systems (CSs)</topic><topic>Fuzzy systems</topic><topic>Grey Wolf Optimizer (GWO)</topic><topic>Heuristic algorithms</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Parameter sensitivity</topic><topic>parametric sensitivity</topic><topic>Process control</topic><topic>Proportional integral</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>servo systems</topic><topic>Servocontrol</topic><topic>Servomotors</topic><topic>Time constant</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Precup, Radu-Emil</creatorcontrib><creatorcontrib>David, Radu-Codrut</creatorcontrib><creatorcontrib>Petriu, Emil M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Precup, Radu-Emil</au><au>David, Radu-Codrut</au><au>Petriu, Emil M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>64</volume><issue>1</issue><spage>527</spage><epage>534</epage><pages>527-534</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper proposes an innovative tuning approach for fuzzy control systems (CSs) with a reduced parametric sensitivity using the Grey Wolf Optimizer (GWO) algorithm. The CSs consist of servo system processes controlled by Takagi-Sugeno-Kang proportional-integral fuzzy controllers (TSK PI-FCs). The process models have second-order dynamics with an integral component, variable parameters, a saturation, and dead-zone static nonlinearity. The sensitivity analysis employs output sensitivity functions of the sensitivity models defined with respect to the parametric variations of the processes. The GWO algorithm is used in solving the optimization problems, where the objective functions include the output sensitivity functions. GWO's motivation is based on its low-computational cost. The tuning approach is validated in an experimental case study of a position control for a laboratory nonlinear servo system, and TSK PI-FCs with a reduced process small time constant sensitivity are offered.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2016.2607698</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-01, Vol.64 (1), p.527-534
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2016_2607698
source IEEE Electronic Library (IEL)
subjects Algorithms
Control systems
Experimental results
Fuzzy control
fuzzy control systems (CSs)
Fuzzy systems
Grey Wolf Optimizer (GWO)
Heuristic algorithms
Nonlinearity
Optimization
Parameter sensitivity
parametric sensitivity
Process control
Proportional integral
Sensitivity
Sensitivity analysis
servo systems
Servocontrol
Servomotors
Time constant
Tuning
title Grey Wolf Optimizer Algorithm-Based Tuning of Fuzzy Control Systems With Reduced Parametric Sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grey%20Wolf%20Optimizer%20Algorithm-Based%20Tuning%20of%20Fuzzy%20Control%20Systems%20With%20Reduced%20Parametric%20Sensitivity&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Precup,%20Radu-Emil&rft.date=2017-01-01&rft.volume=64&rft.issue=1&rft.spage=527&rft.epage=534&rft.pages=527-534&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2016.2607698&rft_dat=%3Cproquest_RIE%3E1848276576%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848276576&rft_id=info:pmid/&rft_ieee_id=7563386&rfr_iscdi=true