Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping

Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2014-10, Vol.61 (10), p.5453-5464
Hauptverfasser: Hey, Jonathan, Teo, Tat Joo, Bui, Viet Phuong, Yang, Guilin, Martinez-Botas, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5464
container_issue 10
container_start_page 5453
container_title IEEE transactions on industrial electronics (1982)
container_volume 61
creator Hey, Jonathan
Teo, Tat Joo
Bui, Viet Phuong
Yang, Guilin
Martinez-Botas, Ricardo
description Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.
doi_str_mv 10.1109/TIE.2014.2301727
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2014_2301727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6718007</ieee_id><sourcerecordid>1620097964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhoO44OjuXfAS2IuXHvOd9HEYx1VQ5uDIHpuadHqM9HR6kzSiv34jIx48FRTP-0LVg9A5JXNKSX21uVvNGaFizjihmukjNKNS6qquhTlGM8K0qQgR6gSdpvRCCimpnKH3Ve9sjmEPu8Flb_HC5glyiPjaJb8b8GKA_i35hJ-SH3YY8OY1VI8Zdg6vx-z3_h2yDwN-cPk5tPivz894GSAmV934weGH0Loer6c8Thk_jmDLCsaxdP1EPzrok_v1Oc_Q081qs7yt7td_7paL-8pyJnIlmYGOiS0hWnLFWka2qhMWDLTKCNEqtQXBtexUpwC05YZ0TlEBrZT1VnB-hi4PvWMM_yaXcrP3ybq-h8GFKTVUMUJqXStR0N_f0JcwxfKBQkkha26oUYUiB8rGkFJ0XTNGv4f41lDSfMhoiozmQ0bzKaNELg4R75z7wpWmppzF_wMmdYVd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545938186</pqid></control><display><type>article</type><title>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</title><source>IEEE Electronic Library (IEL)</source><creator>Hey, Jonathan ; Teo, Tat Joo ; Bui, Viet Phuong ; Yang, Guilin ; Martinez-Botas, Ricardo</creator><creatorcontrib>Hey, Jonathan ; Teo, Tat Joo ; Bui, Viet Phuong ; Yang, Guilin ; Martinez-Botas, Ricardo</creatorcontrib><description>Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2301727</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuator design ; Actuators ; Algorithms ; Atmospheric modeling ; Computational modeling ; Design engineering ; Devices ; Finite element analysis ; Force ; Magnetic circuits ; Magnetic cores ; Mathematical analysis ; Mathematical models ; Optimization ; Reduction</subject><ispartof>IEEE transactions on industrial electronics (1982), 2014-10, Vol.61 (10), p.5453-5464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</citedby><cites>FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6718007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6718007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hey, Jonathan</creatorcontrib><creatorcontrib>Teo, Tat Joo</creatorcontrib><creatorcontrib>Bui, Viet Phuong</creatorcontrib><creatorcontrib>Yang, Guilin</creatorcontrib><creatorcontrib>Martinez-Botas, Ricardo</creatorcontrib><title>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.</description><subject>Actuator design</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Computational modeling</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Finite element analysis</subject><subject>Force</subject><subject>Magnetic circuits</subject><subject>Magnetic cores</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Reduction</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LJDEQhoO44OjuXfAS2IuXHvOd9HEYx1VQ5uDIHpuadHqM9HR6kzSiv34jIx48FRTP-0LVg9A5JXNKSX21uVvNGaFizjihmukjNKNS6qquhTlGM8K0qQgR6gSdpvRCCimpnKH3Ve9sjmEPu8Flb_HC5glyiPjaJb8b8GKA_i35hJ-SH3YY8OY1VI8Zdg6vx-z3_h2yDwN-cPk5tPivz894GSAmV934weGH0Loer6c8Thk_jmDLCsaxdP1EPzrok_v1Oc_Q081qs7yt7td_7paL-8pyJnIlmYGOiS0hWnLFWka2qhMWDLTKCNEqtQXBtexUpwC05YZ0TlEBrZT1VnB-hi4PvWMM_yaXcrP3ybq-h8GFKTVUMUJqXStR0N_f0JcwxfKBQkkha26oUYUiB8rGkFJ0XTNGv4f41lDSfMhoiozmQ0bzKaNELg4R75z7wpWmppzF_wMmdYVd</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Hey, Jonathan</creator><creator>Teo, Tat Joo</creator><creator>Bui, Viet Phuong</creator><creator>Yang, Guilin</creator><creator>Martinez-Botas, Ricardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141001</creationdate><title>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</title><author>Hey, Jonathan ; Teo, Tat Joo ; Bui, Viet Phuong ; Yang, Guilin ; Martinez-Botas, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuator design</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Computational modeling</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Finite element analysis</topic><topic>Force</topic><topic>Magnetic circuits</topic><topic>Magnetic cores</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hey, Jonathan</creatorcontrib><creatorcontrib>Teo, Tat Joo</creatorcontrib><creatorcontrib>Bui, Viet Phuong</creatorcontrib><creatorcontrib>Yang, Guilin</creatorcontrib><creatorcontrib>Martinez-Botas, Ricardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hey, Jonathan</au><au>Teo, Tat Joo</au><au>Bui, Viet Phuong</au><au>Yang, Guilin</au><au>Martinez-Botas, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>61</volume><issue>10</issue><spage>5453</spage><epage>5464</epage><pages>5453-5464</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2301727</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2014-10, Vol.61 (10), p.5453-5464
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2014_2301727
source IEEE Electronic Library (IEL)
subjects Actuator design
Actuators
Algorithms
Atmospheric modeling
Computational modeling
Design engineering
Devices
Finite element analysis
Force
Magnetic circuits
Magnetic cores
Mathematical analysis
Mathematical models
Optimization
Reduction
title Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Actuator%20Design%20Analysis%20Using%20a%20Two-Stage%20Optimization%20Method%20With%20Coarse-Fine%20Model%20Output%20Space%20Mapping&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Hey,%20Jonathan&rft.date=2014-10-01&rft.volume=61&rft.issue=10&rft.spage=5453&rft.epage=5464&rft.pages=5453-5464&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2301727&rft_dat=%3Cproquest_RIE%3E1620097964%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545938186&rft_id=info:pmid/&rft_ieee_id=6718007&rfr_iscdi=true