Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping
Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2014-10, Vol.61 (10), p.5453-5464 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5464 |
---|---|
container_issue | 10 |
container_start_page | 5453 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 61 |
creator | Hey, Jonathan Teo, Tat Joo Bui, Viet Phuong Yang, Guilin Martinez-Botas, Ricardo |
description | Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method. |
doi_str_mv | 10.1109/TIE.2014.2301727 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2014_2301727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6718007</ieee_id><sourcerecordid>1620097964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhoO44OjuXfAS2IuXHvOd9HEYx1VQ5uDIHpuadHqM9HR6kzSiv34jIx48FRTP-0LVg9A5JXNKSX21uVvNGaFizjihmukjNKNS6qquhTlGM8K0qQgR6gSdpvRCCimpnKH3Ve9sjmEPu8Flb_HC5glyiPjaJb8b8GKA_i35hJ-SH3YY8OY1VI8Zdg6vx-z3_h2yDwN-cPk5tPivz894GSAmV934weGH0Loer6c8Thk_jmDLCsaxdP1EPzrok_v1Oc_Q081qs7yt7td_7paL-8pyJnIlmYGOiS0hWnLFWka2qhMWDLTKCNEqtQXBtexUpwC05YZ0TlEBrZT1VnB-hi4PvWMM_yaXcrP3ybq-h8GFKTVUMUJqXStR0N_f0JcwxfKBQkkha26oUYUiB8rGkFJ0XTNGv4f41lDSfMhoiozmQ0bzKaNELg4R75z7wpWmppzF_wMmdYVd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545938186</pqid></control><display><type>article</type><title>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</title><source>IEEE Electronic Library (IEL)</source><creator>Hey, Jonathan ; Teo, Tat Joo ; Bui, Viet Phuong ; Yang, Guilin ; Martinez-Botas, Ricardo</creator><creatorcontrib>Hey, Jonathan ; Teo, Tat Joo ; Bui, Viet Phuong ; Yang, Guilin ; Martinez-Botas, Ricardo</creatorcontrib><description>Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2014.2301727</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuator design ; Actuators ; Algorithms ; Atmospheric modeling ; Computational modeling ; Design engineering ; Devices ; Finite element analysis ; Force ; Magnetic circuits ; Magnetic cores ; Mathematical analysis ; Mathematical models ; Optimization ; Reduction</subject><ispartof>IEEE transactions on industrial electronics (1982), 2014-10, Vol.61 (10), p.5453-5464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</citedby><cites>FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6718007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6718007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hey, Jonathan</creatorcontrib><creatorcontrib>Teo, Tat Joo</creatorcontrib><creatorcontrib>Bui, Viet Phuong</creatorcontrib><creatorcontrib>Yang, Guilin</creatorcontrib><creatorcontrib>Martinez-Botas, Ricardo</creatorcontrib><title>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.</description><subject>Actuator design</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Atmospheric modeling</subject><subject>Computational modeling</subject><subject>Design engineering</subject><subject>Devices</subject><subject>Finite element analysis</subject><subject>Force</subject><subject>Magnetic circuits</subject><subject>Magnetic cores</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Reduction</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LJDEQhoO44OjuXfAS2IuXHvOd9HEYx1VQ5uDIHpuadHqM9HR6kzSiv34jIx48FRTP-0LVg9A5JXNKSX21uVvNGaFizjihmukjNKNS6qquhTlGM8K0qQgR6gSdpvRCCimpnKH3Ve9sjmEPu8Flb_HC5glyiPjaJb8b8GKA_i35hJ-SH3YY8OY1VI8Zdg6vx-z3_h2yDwN-cPk5tPivz894GSAmV934weGH0Loer6c8Thk_jmDLCsaxdP1EPzrok_v1Oc_Q081qs7yt7td_7paL-8pyJnIlmYGOiS0hWnLFWka2qhMWDLTKCNEqtQXBtexUpwC05YZ0TlEBrZT1VnB-hi4PvWMM_yaXcrP3ybq-h8GFKTVUMUJqXStR0N_f0JcwxfKBQkkha26oUYUiB8rGkFJ0XTNGv4f41lDSfMhoiozmQ0bzKaNELg4R75z7wpWmppzF_wMmdYVd</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Hey, Jonathan</creator><creator>Teo, Tat Joo</creator><creator>Bui, Viet Phuong</creator><creator>Yang, Guilin</creator><creator>Martinez-Botas, Ricardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141001</creationdate><title>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</title><author>Hey, Jonathan ; Teo, Tat Joo ; Bui, Viet Phuong ; Yang, Guilin ; Martinez-Botas, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-528af24b0075362d20b6f4ca8ad6844d66ba4375f6f6aa7c380fe614ad559b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuator design</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Atmospheric modeling</topic><topic>Computational modeling</topic><topic>Design engineering</topic><topic>Devices</topic><topic>Finite element analysis</topic><topic>Force</topic><topic>Magnetic circuits</topic><topic>Magnetic cores</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hey, Jonathan</creatorcontrib><creatorcontrib>Teo, Tat Joo</creatorcontrib><creatorcontrib>Bui, Viet Phuong</creatorcontrib><creatorcontrib>Yang, Guilin</creatorcontrib><creatorcontrib>Martinez-Botas, Ricardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hey, Jonathan</au><au>Teo, Tat Joo</au><au>Bui, Viet Phuong</au><au>Yang, Guilin</au><au>Martinez-Botas, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>61</volume><issue>10</issue><spage>5453</spage><epage>5464</epage><pages>5453-5464</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Electromagnetic actuators are energy conversion devices that suffer from inefficiencies. The conversion losses generate internal heat, which is undesirable, as it leads to thermal loading on the device. Temperature rise should be limited to enhance the reliability, minimize thermal disturbance, and improve the output performance of the device. This paper presents the application of an optimization method to determine the geometric configuration of a flexure-based linear electromagnetic actuator that maximizes output force per unit of heat generated. A two-stage optimization method is used to search for a global solution, followed by a feasible solution locally using a branch and bound method. The finite element magnetic (fine) model is replaced by an analytical (coarse) model during optimization using an output space mapping technique. An 80% reduction in computation time is achieved by the application of such an approximation technique. The measured output from the new prototype based on the optimal design shows a 45% increase in air gap magnetic flux density, a 40% increase in output force, and a 26% reduction in heat generation when compared with the initial design before application of the optimization method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2014.2301727</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2014-10, Vol.61 (10), p.5453-5464 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2014_2301727 |
source | IEEE Electronic Library (IEL) |
subjects | Actuator design Actuators Algorithms Atmospheric modeling Computational modeling Design engineering Devices Finite element analysis Force Magnetic circuits Magnetic cores Mathematical analysis Mathematical models Optimization Reduction |
title | Electromagnetic Actuator Design Analysis Using a Two-Stage Optimization Method With Coarse-Fine Model Output Space Mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromagnetic%20Actuator%20Design%20Analysis%20Using%20a%20Two-Stage%20Optimization%20Method%20With%20Coarse-Fine%20Model%20Output%20Space%20Mapping&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Hey,%20Jonathan&rft.date=2014-10-01&rft.volume=61&rft.issue=10&rft.spage=5453&rft.epage=5464&rft.pages=5453-5464&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2014.2301727&rft_dat=%3Cproquest_RIE%3E1620097964%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545938186&rft_id=info:pmid/&rft_ieee_id=6718007&rfr_iscdi=true |