Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices
Thermoelectric energy harvesting requires a substantial temperature difference ΔT to be available within the device structure. This has restricted its use to particular applications such as heat engine structural monitoring, where a hot metal surface is available. An alternative approach is possible...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2014-01, Vol.61 (1), p.302-309 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | 1 |
container_start_page | 302 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 61 |
creator | Kiziroglou, Michail E. Wright, Steven W. Toh, Tzern T. Mitcheson, Paul D. Becker, Th Yeatman, Eric M. |
description | Thermoelectric energy harvesting requires a substantial temperature difference ΔT to be available within the device structure. This has restricted its use to particular applications such as heat engine structural monitoring, where a hot metal surface is available. An alternative approach is possible in cases where ambient temperature undergoes regular variation. This involves using a heat storage unit, which is filled with a phase-change material (PCM), to create an internal spatial temperature difference from temperature variation in time. In this paper, key design parameters and a characterization methodology for such devices are defined. The maximum electrical energy density expected for a given temperature range is calculated. The fabrication, characterization, and analysis of a heat storage harvesting prototype device are presented for temperature variations of a few tens of degrees around 0 °C, corresponding to aircraft flight conditions. Output energy of 105 J into a 10- Ω matched resistive load, from a temperature sweep from +20 °C to -21 °C, then to +25 °C is demonstrated, using 23 g of water as the PCM. The proposed device offers a unique powering solution for wireless sensor applications involving locations with temperature variation, such as structural monitoring in aircraft, industrial, and vehicle facilities. |
doi_str_mv | 10.1109/TIE.2013.2257140 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2013_2257140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6494627</ieee_id><sourcerecordid>10_1109_TIE_2013_2257140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-9878026555eeafb74957a509b3b7268773c050bd4694c8ec383e68859edb6da93</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWKt7wU1eYMYv_8lS-jeFggvreshkvqmRdkaSoeDb29Li6m7OuYtDyDODkjFwr9v1ouTARMm5MkzCDZkwpUzhnLS3ZALc2AJA6nvykPM3AJOKqQmp5pjjrqe-b-nSNykGP8ahp0NHK_Qj_RiH5HdIt1-YDgPuMYwnhlY-HTGPsd_ROR5jwPxI7jq_z_h03Sn5XC62s6rYvK_Ws7dNEYRhY-GsscC1UgrRd42RThmvwDWiMVxbY0QABU0rtZPBYhBWoLZWOWwb3XonpgQuvyENOSfs6p8UDz791gzqc4n6VKI-l6ivJU7Ky0WJiPiPa-mk5kb8AVi8WVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Kiziroglou, Michail E. ; Wright, Steven W. ; Toh, Tzern T. ; Mitcheson, Paul D. ; Becker, Th ; Yeatman, Eric M.</creator><creatorcontrib>Kiziroglou, Michail E. ; Wright, Steven W. ; Toh, Tzern T. ; Mitcheson, Paul D. ; Becker, Th ; Yeatman, Eric M.</creatorcontrib><description>Thermoelectric energy harvesting requires a substantial temperature difference ΔT to be available within the device structure. This has restricted its use to particular applications such as heat engine structural monitoring, where a hot metal surface is available. An alternative approach is possible in cases where ambient temperature undergoes regular variation. This involves using a heat storage unit, which is filled with a phase-change material (PCM), to create an internal spatial temperature difference from temperature variation in time. In this paper, key design parameters and a characterization methodology for such devices are defined. The maximum electrical energy density expected for a given temperature range is calculated. The fabrication, characterization, and analysis of a heat storage harvesting prototype device are presented for temperature variations of a few tens of degrees around 0 °C, corresponding to aircraft flight conditions. Output energy of 105 J into a 10- Ω matched resistive load, from a temperature sweep from +20 °C to -21 °C, then to +25 °C is demonstrated, using 23 g of water as the PCM. The proposed device offers a unique powering solution for wireless sensor applications involving locations with temperature variation, such as structural monitoring in aircraft, industrial, and vehicle facilities.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2013.2257140</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Avionics ; Conductivity ; energy harvesting ; heat storage ; Phase change materials ; phase-change material (PCM) ; Resistance ; Resistance heating ; Temperature distribution ; Thermal conductivity ; thermoelectric ; wireless sensor networks</subject><ispartof>IEEE transactions on industrial electronics (1982), 2014-01, Vol.61 (1), p.302-309</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-9878026555eeafb74957a509b3b7268773c050bd4694c8ec383e68859edb6da93</citedby><cites>FETCH-LOGICAL-c371t-9878026555eeafb74957a509b3b7268773c050bd4694c8ec383e68859edb6da93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6494627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6494627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiziroglou, Michail E.</creatorcontrib><creatorcontrib>Wright, Steven W.</creatorcontrib><creatorcontrib>Toh, Tzern T.</creatorcontrib><creatorcontrib>Mitcheson, Paul D.</creatorcontrib><creatorcontrib>Becker, Th</creatorcontrib><creatorcontrib>Yeatman, Eric M.</creatorcontrib><title>Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Thermoelectric energy harvesting requires a substantial temperature difference ΔT to be available within the device structure. This has restricted its use to particular applications such as heat engine structural monitoring, where a hot metal surface is available. An alternative approach is possible in cases where ambient temperature undergoes regular variation. This involves using a heat storage unit, which is filled with a phase-change material (PCM), to create an internal spatial temperature difference from temperature variation in time. In this paper, key design parameters and a characterization methodology for such devices are defined. The maximum electrical energy density expected for a given temperature range is calculated. The fabrication, characterization, and analysis of a heat storage harvesting prototype device are presented for temperature variations of a few tens of degrees around 0 °C, corresponding to aircraft flight conditions. Output energy of 105 J into a 10- Ω matched resistive load, from a temperature sweep from +20 °C to -21 °C, then to +25 °C is demonstrated, using 23 g of water as the PCM. The proposed device offers a unique powering solution for wireless sensor applications involving locations with temperature variation, such as structural monitoring in aircraft, industrial, and vehicle facilities.</description><subject>Avionics</subject><subject>Conductivity</subject><subject>energy harvesting</subject><subject>heat storage</subject><subject>Phase change materials</subject><subject>phase-change material (PCM)</subject><subject>Resistance</subject><subject>Resistance heating</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>thermoelectric</subject><subject>wireless sensor networks</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1KAzEYRYMoWKt7wU1eYMYv_8lS-jeFggvreshkvqmRdkaSoeDb29Li6m7OuYtDyDODkjFwr9v1ouTARMm5MkzCDZkwpUzhnLS3ZALc2AJA6nvykPM3AJOKqQmp5pjjrqe-b-nSNykGP8ahp0NHK_Qj_RiH5HdIt1-YDgPuMYwnhlY-HTGPsd_ROR5jwPxI7jq_z_h03Sn5XC62s6rYvK_Ws7dNEYRhY-GsscC1UgrRd42RThmvwDWiMVxbY0QABU0rtZPBYhBWoLZWOWwb3XonpgQuvyENOSfs6p8UDz791gzqc4n6VKI-l6ivJU7Ky0WJiPiPa-mk5kb8AVi8WVE</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Kiziroglou, Michail E.</creator><creator>Wright, Steven W.</creator><creator>Toh, Tzern T.</creator><creator>Mitcheson, Paul D.</creator><creator>Becker, Th</creator><creator>Yeatman, Eric M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201401</creationdate><title>Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices</title><author>Kiziroglou, Michail E. ; Wright, Steven W. ; Toh, Tzern T. ; Mitcheson, Paul D. ; Becker, Th ; Yeatman, Eric M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-9878026555eeafb74957a509b3b7268773c050bd4694c8ec383e68859edb6da93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Avionics</topic><topic>Conductivity</topic><topic>energy harvesting</topic><topic>heat storage</topic><topic>Phase change materials</topic><topic>phase-change material (PCM)</topic><topic>Resistance</topic><topic>Resistance heating</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>thermoelectric</topic><topic>wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiziroglou, Michail E.</creatorcontrib><creatorcontrib>Wright, Steven W.</creatorcontrib><creatorcontrib>Toh, Tzern T.</creatorcontrib><creatorcontrib>Mitcheson, Paul D.</creatorcontrib><creatorcontrib>Becker, Th</creatorcontrib><creatorcontrib>Yeatman, Eric M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiziroglou, Michail E.</au><au>Wright, Steven W.</au><au>Toh, Tzern T.</au><au>Mitcheson, Paul D.</au><au>Becker, Th</au><au>Yeatman, Eric M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2014-01</date><risdate>2014</risdate><volume>61</volume><issue>1</issue><spage>302</spage><epage>309</epage><pages>302-309</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Thermoelectric energy harvesting requires a substantial temperature difference ΔT to be available within the device structure. This has restricted its use to particular applications such as heat engine structural monitoring, where a hot metal surface is available. An alternative approach is possible in cases where ambient temperature undergoes regular variation. This involves using a heat storage unit, which is filled with a phase-change material (PCM), to create an internal spatial temperature difference from temperature variation in time. In this paper, key design parameters and a characterization methodology for such devices are defined. The maximum electrical energy density expected for a given temperature range is calculated. The fabrication, characterization, and analysis of a heat storage harvesting prototype device are presented for temperature variations of a few tens of degrees around 0 °C, corresponding to aircraft flight conditions. Output energy of 105 J into a 10- Ω matched resistive load, from a temperature sweep from +20 °C to -21 °C, then to +25 °C is demonstrated, using 23 g of water as the PCM. The proposed device offers a unique powering solution for wireless sensor applications involving locations with temperature variation, such as structural monitoring in aircraft, industrial, and vehicle facilities.</abstract><pub>IEEE</pub><doi>10.1109/TIE.2013.2257140</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2014-01, Vol.61 (1), p.302-309 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2013_2257140 |
source | IEEE Electronic Library (IEL) |
subjects | Avionics Conductivity energy harvesting heat storage Phase change materials phase-change material (PCM) Resistance Resistance heating Temperature distribution Thermal conductivity thermoelectric wireless sensor networks |
title | Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Fabrication%20of%20Heat%20Storage%20Thermoelectric%20Harvesting%20Devices&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Kiziroglou,%20Michail%20E.&rft.date=2014-01&rft.volume=61&rft.issue=1&rft.spage=302&rft.epage=309&rft.pages=302-309&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2013.2257140&rft_dat=%3Ccrossref_RIE%3E10_1109_TIE_2013_2257140%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6494627&rfr_iscdi=true |