A generic neurofuzzy model-based approach for detecting faults in induction motors

Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2005-10, Vol.52 (5), p.1420-1427
Hauptverfasser: Tan, W.W., Huo, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1427
container_issue 5
container_start_page 1420
container_title IEEE transactions on industrial electronics (1982)
container_volume 52
creator Tan, W.W.
Huo, H.
description Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.
doi_str_mv 10.1109/TIE.2005.855654
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2005_855654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1512475</ieee_id><sourcerecordid>29286629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</originalsourceid><addsrcrecordid>eNqFkUFLAzEQhYMoWKtnD14WD962nWSTTfZYStVCQZB6DtnNbN2y3dRk99D-elMqCF6EgYHhe4-ZeYTcU5hQCsV0vVxMGICYKCFywS_IiAoh06Lg6pKMgEmVAvD8mtyEsAWgXFAxIu-zZIMd-qZKOhy8q4fj8ZDsnMU2LU1Am5j93jtTfSa184nFHqu-6TZJbYa2D0nTxbJDnLkuynrnwy25qk0b8O6nj8nH82I9f01Xby_L-WyVVpmAPpVMGQqUUTSclSWl0tjcZpYKJkFZXslSgDI5zYypEQGMZKWVFgTkFkydjcnT2Tfu9zVg6PWuCRW2renQDUGzgqk8Z8X_oAJGc4AIPv4Bt27wXTxCK5XFh0l-cpueocq7EDzWeu-bnfEHTUGfktAxCX1KQp-TiIqHs6JBxF9aUMalyL4BzL2EKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883451749</pqid></control><display><type>article</type><title>A generic neurofuzzy model-based approach for detecting faults in induction motors</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, W.W. ; Huo, H.</creator><creatorcontrib>Tan, W.W. ; Huo, H.</creatorcontrib><description>Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2005.855654</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asynchronous rotating machines ; Bars ; Electrical fault detection ; Fault detection ; Fault diagnosis ; fuzzy neural networks ; Induction generators ; Induction motors ; Residual stresses ; Rotors ; Studies ; Thermal stresses ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2005-10, Vol.52 (5), p.1420-1427</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</citedby><cites>FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1512475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1512475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, W.W.</creatorcontrib><creatorcontrib>Huo, H.</creatorcontrib><title>A generic neurofuzzy model-based approach for detecting faults in induction motors</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.</description><subject>Asynchronous rotating machines</subject><subject>Bars</subject><subject>Electrical fault detection</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fuzzy neural networks</subject><subject>Induction generators</subject><subject>Induction motors</subject><subject>Residual stresses</subject><subject>Rotors</subject><subject>Studies</subject><subject>Thermal stresses</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFLAzEQhYMoWKtnD14WD962nWSTTfZYStVCQZB6DtnNbN2y3dRk99D-elMqCF6EgYHhe4-ZeYTcU5hQCsV0vVxMGICYKCFywS_IiAoh06Lg6pKMgEmVAvD8mtyEsAWgXFAxIu-zZIMd-qZKOhy8q4fj8ZDsnMU2LU1Am5j93jtTfSa184nFHqu-6TZJbYa2D0nTxbJDnLkuynrnwy25qk0b8O6nj8nH82I9f01Xby_L-WyVVpmAPpVMGQqUUTSclSWl0tjcZpYKJkFZXslSgDI5zYypEQGMZKWVFgTkFkydjcnT2Tfu9zVg6PWuCRW2renQDUGzgqk8Z8X_oAJGc4AIPv4Bt27wXTxCK5XFh0l-cpueocq7EDzWeu-bnfEHTUGfktAxCX1KQp-TiIqHs6JBxF9aUMalyL4BzL2EKw</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Tan, W.W.</creator><creator>Huo, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20051001</creationdate><title>A generic neurofuzzy model-based approach for detecting faults in induction motors</title><author>Tan, W.W. ; Huo, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asynchronous rotating machines</topic><topic>Bars</topic><topic>Electrical fault detection</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fuzzy neural networks</topic><topic>Induction generators</topic><topic>Induction motors</topic><topic>Residual stresses</topic><topic>Rotors</topic><topic>Studies</topic><topic>Thermal stresses</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, W.W.</creatorcontrib><creatorcontrib>Huo, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, W.W.</au><au>Huo, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generic neurofuzzy model-based approach for detecting faults in induction motors</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>52</volume><issue>5</issue><spage>1420</spage><epage>1427</epage><pages>1420-1427</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2005.855654</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2005-10, Vol.52 (5), p.1420-1427
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2005_855654
source IEEE Electronic Library (IEL)
subjects Asynchronous rotating machines
Bars
Electrical fault detection
Fault detection
Fault diagnosis
fuzzy neural networks
Induction generators
Induction motors
Residual stresses
Rotors
Studies
Thermal stresses
Vibrations
title A generic neurofuzzy model-based approach for detecting faults in induction motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generic%20neurofuzzy%20model-based%20approach%20for%20detecting%20faults%20in%20induction%20motors&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Tan,%20W.W.&rft.date=2005-10-01&rft.volume=52&rft.issue=5&rft.spage=1420&rft.epage=1427&rft.pages=1420-1427&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2005.855654&rft_dat=%3Cproquest_RIE%3E29286629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883451749&rft_id=info:pmid/&rft_ieee_id=1512475&rfr_iscdi=true