A generic neurofuzzy model-based approach for detecting faults in induction motors
Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection sc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2005-10, Vol.52 (5), p.1420-1427 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1427 |
---|---|
container_issue | 5 |
container_start_page | 1420 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 52 |
creator | Tan, W.W. Huo, H. |
description | Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme. |
doi_str_mv | 10.1109/TIE.2005.855654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2005_855654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1512475</ieee_id><sourcerecordid>29286629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</originalsourceid><addsrcrecordid>eNqFkUFLAzEQhYMoWKtnD14WD962nWSTTfZYStVCQZB6DtnNbN2y3dRk99D-elMqCF6EgYHhe4-ZeYTcU5hQCsV0vVxMGICYKCFywS_IiAoh06Lg6pKMgEmVAvD8mtyEsAWgXFAxIu-zZIMd-qZKOhy8q4fj8ZDsnMU2LU1Am5j93jtTfSa184nFHqu-6TZJbYa2D0nTxbJDnLkuynrnwy25qk0b8O6nj8nH82I9f01Xby_L-WyVVpmAPpVMGQqUUTSclSWl0tjcZpYKJkFZXslSgDI5zYypEQGMZKWVFgTkFkydjcnT2Tfu9zVg6PWuCRW2renQDUGzgqk8Z8X_oAJGc4AIPv4Bt27wXTxCK5XFh0l-cpueocq7EDzWeu-bnfEHTUGfktAxCX1KQp-TiIqHs6JBxF9aUMalyL4BzL2EKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883451749</pqid></control><display><type>article</type><title>A generic neurofuzzy model-based approach for detecting faults in induction motors</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, W.W. ; Huo, H.</creator><creatorcontrib>Tan, W.W. ; Huo, H.</creatorcontrib><description>Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2005.855654</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asynchronous rotating machines ; Bars ; Electrical fault detection ; Fault detection ; Fault diagnosis ; fuzzy neural networks ; Induction generators ; Induction motors ; Residual stresses ; Rotors ; Studies ; Thermal stresses ; Vibrations</subject><ispartof>IEEE transactions on industrial electronics (1982), 2005-10, Vol.52 (5), p.1420-1427</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</citedby><cites>FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1512475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1512475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, W.W.</creatorcontrib><creatorcontrib>Huo, H.</creatorcontrib><title>A generic neurofuzzy model-based approach for detecting faults in induction motors</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.</description><subject>Asynchronous rotating machines</subject><subject>Bars</subject><subject>Electrical fault detection</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fuzzy neural networks</subject><subject>Induction generators</subject><subject>Induction motors</subject><subject>Residual stresses</subject><subject>Rotors</subject><subject>Studies</subject><subject>Thermal stresses</subject><subject>Vibrations</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUFLAzEQhYMoWKtnD14WD962nWSTTfZYStVCQZB6DtnNbN2y3dRk99D-elMqCF6EgYHhe4-ZeYTcU5hQCsV0vVxMGICYKCFywS_IiAoh06Lg6pKMgEmVAvD8mtyEsAWgXFAxIu-zZIMd-qZKOhy8q4fj8ZDsnMU2LU1Am5j93jtTfSa184nFHqu-6TZJbYa2D0nTxbJDnLkuynrnwy25qk0b8O6nj8nH82I9f01Xby_L-WyVVpmAPpVMGQqUUTSclSWl0tjcZpYKJkFZXslSgDI5zYypEQGMZKWVFgTkFkydjcnT2Tfu9zVg6PWuCRW2renQDUGzgqk8Z8X_oAJGc4AIPv4Bt27wXTxCK5XFh0l-cpueocq7EDzWeu-bnfEHTUGfktAxCX1KQp-TiIqHs6JBxF9aUMalyL4BzL2EKw</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Tan, W.W.</creator><creator>Huo, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20051001</creationdate><title>A generic neurofuzzy model-based approach for detecting faults in induction motors</title><author>Tan, W.W. ; Huo, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-728a10121ea42bb117ad6d3d152708d4c7b508a613aafee00a72bd7d0506d0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asynchronous rotating machines</topic><topic>Bars</topic><topic>Electrical fault detection</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fuzzy neural networks</topic><topic>Induction generators</topic><topic>Induction motors</topic><topic>Residual stresses</topic><topic>Rotors</topic><topic>Studies</topic><topic>Thermal stresses</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, W.W.</creatorcontrib><creatorcontrib>Huo, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, W.W.</au><au>Huo, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generic neurofuzzy model-based approach for detecting faults in induction motors</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2005-10-01</date><risdate>2005</risdate><volume>52</volume><issue>5</issue><spage>1420</spage><epage>1427</epage><pages>1420-1427</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Many fault detection and diagnosis schemes are based on the concept of comparing the plant output with a model in order to generate residues. A fault is deemed to have occurred if the residue exceeds a predetermined threshold. Unfortunately, the practical usefulness of model-based fault detection schemes is limited because of the difficulty in acquiring sufficiently rich experimental data to identify an accurate model of the system characteristics. This paper aims at developing a generic neurofuzzy model-based strategy for detecting broken rotor bars, which is one of the most common type of faults that may occur in a squirrel-cage induction motor. A neurofuzzy model that captures the generic characteristics of a class of asynchronous motor is the key component of the proposed approach. It is identified using data generated by a simulation model that is constructed using information on the name plate of the motor. Customization for individual motors is then carried out by selecting the threshold for fault detection via an empirical steady-state torque-speed curve. Since data obtained from a practical motor are used to select the threshold and not to build a complete model, the objective of reducing the amount of experimental input-output data required to design a model-based fault detector may be realized. Experimental results are presented to demonstrate the viability of the proposed fault detection scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2005.855654</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2005-10, Vol.52 (5), p.1420-1427 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2005_855654 |
source | IEEE Electronic Library (IEL) |
subjects | Asynchronous rotating machines Bars Electrical fault detection Fault detection Fault diagnosis fuzzy neural networks Induction generators Induction motors Residual stresses Rotors Studies Thermal stresses Vibrations |
title | A generic neurofuzzy model-based approach for detecting faults in induction motors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A47%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generic%20neurofuzzy%20model-based%20approach%20for%20detecting%20faults%20in%20induction%20motors&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Tan,%20W.W.&rft.date=2005-10-01&rft.volume=52&rft.issue=5&rft.spage=1420&rft.epage=1427&rft.pages=1420-1427&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2005.855654&rft_dat=%3Cproquest_RIE%3E29286629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883451749&rft_id=info:pmid/&rft_ieee_id=1512475&rfr_iscdi=true |