Demand-Side Joint Electricity and Carbon Trading Mechanism

Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shapin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial cyber-physical systems 2024, Vol.2, p.14-25
Hauptverfasser: Hua, Haochen, Chen, Xingying, Gan, Lei, Sun, Jiaxiang, Dong, Nanqing, Liu, Di, Qin, Zhaoming, Li, Kang, Hu, Shiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 14
container_title IEEE transactions on industrial cyber-physical systems
container_volume 2
creator Hua, Haochen
Chen, Xingying
Gan, Lei
Sun, Jiaxiang
Dong, Nanqing
Liu, Di
Qin, Zhaoming
Li, Kang
Hu, Shiyan
description Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.
doi_str_mv 10.1109/TICPS.2023.3335328
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TICPS_2023_3335328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330727</ieee_id><sourcerecordid>10_1109_TICPS_2023_3335328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNS-gLjICyTemZvJJO4k1lqpKDSuh_mLjjSJzGTTtze1XXR1D1y-A-cj5JZCRilU9826_thmDBhmiMiRlRdkxkpkqQDIL8_yNVnE-AMArCpYQcWMPDy5TvU23XrrktfB92Oy3DkzBm_8uE-mV1KroIc-aYKyvv9K3pz5Vr2P3Q25atUuusXpzsnn87KpX9LN-2pdP25SQymKlGvaClMp1aIW2qoqV0yAwxwKVxnHmeFc88IooNZOe2xpCsFsbgVwXuUa54Qde00YYgyulb_BdyrsJQV5ECD_BciDAHkSMEF3R8g7584ARBBM4B8rJ1ZV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Demand-Side Joint Electricity and Carbon Trading Mechanism</title><source>IEEE Electronic Library (IEL)</source><creator>Hua, Haochen ; Chen, Xingying ; Gan, Lei ; Sun, Jiaxiang ; Dong, Nanqing ; Liu, Di ; Qin, Zhaoming ; Li, Kang ; Hu, Shiyan</creator><creatorcontrib>Hua, Haochen ; Chen, Xingying ; Gan, Lei ; Sun, Jiaxiang ; Dong, Nanqing ; Liu, Di ; Qin, Zhaoming ; Li, Kang ; Hu, Shiyan</creatorcontrib><description>Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.</description><identifier>ISSN: 2832-7004</identifier><identifier>EISSN: 2832-7004</identifier><identifier>DOI: 10.1109/TICPS.2023.3335328</identifier><identifier>CODEN: ITICCX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Carbon dioxide ; carbon emission liability ; Climate change ; Costs ; demand response ; Emissions trading ; Joint electricity and carbon trading ; Low-carbon economy ; Monte Carlo methods ; Optimization ; Real-time systems ; Renewable energy sources</subject><ispartof>IEEE transactions on industrial cyber-physical systems, 2024, Vol.2, p.14-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</citedby><cites>FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</cites><orcidid>0000-0003-1399-6292 ; 0000-0003-2512-0634 ; 0000-0002-2464-6178 ; 0009-0009-4558-1885 ; 0000-0001-6657-0522 ; 0000-0002-3341-2947 ; 0000-0001-5052-5663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hua, Haochen</creatorcontrib><creatorcontrib>Chen, Xingying</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Sun, Jiaxiang</creatorcontrib><creatorcontrib>Dong, Nanqing</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Qin, Zhaoming</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Hu, Shiyan</creatorcontrib><title>Demand-Side Joint Electricity and Carbon Trading Mechanism</title><title>IEEE transactions on industrial cyber-physical systems</title><addtitle>TICPS</addtitle><description>Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.</description><subject>Carbon dioxide</subject><subject>carbon emission liability</subject><subject>Climate change</subject><subject>Costs</subject><subject>demand response</subject><subject>Emissions trading</subject><subject>Joint electricity and carbon trading</subject><subject>Low-carbon economy</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Real-time systems</subject><subject>Renewable energy sources</subject><issn>2832-7004</issn><issn>2832-7004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsNS-gLjICyTemZvJJO4k1lqpKDSuh_mLjjSJzGTTtze1XXR1D1y-A-cj5JZCRilU9826_thmDBhmiMiRlRdkxkpkqQDIL8_yNVnE-AMArCpYQcWMPDy5TvU23XrrktfB92Oy3DkzBm_8uE-mV1KroIc-aYKyvv9K3pz5Vr2P3Q25atUuusXpzsnn87KpX9LN-2pdP25SQymKlGvaClMp1aIW2qoqV0yAwxwKVxnHmeFc88IooNZOe2xpCsFsbgVwXuUa54Qde00YYgyulb_BdyrsJQV5ECD_BciDAHkSMEF3R8g7584ARBBM4B8rJ1ZV</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hua, Haochen</creator><creator>Chen, Xingying</creator><creator>Gan, Lei</creator><creator>Sun, Jiaxiang</creator><creator>Dong, Nanqing</creator><creator>Liu, Di</creator><creator>Qin, Zhaoming</creator><creator>Li, Kang</creator><creator>Hu, Shiyan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1399-6292</orcidid><orcidid>https://orcid.org/0000-0003-2512-0634</orcidid><orcidid>https://orcid.org/0000-0002-2464-6178</orcidid><orcidid>https://orcid.org/0009-0009-4558-1885</orcidid><orcidid>https://orcid.org/0000-0001-6657-0522</orcidid><orcidid>https://orcid.org/0000-0002-3341-2947</orcidid><orcidid>https://orcid.org/0000-0001-5052-5663</orcidid></search><sort><creationdate>2024</creationdate><title>Demand-Side Joint Electricity and Carbon Trading Mechanism</title><author>Hua, Haochen ; Chen, Xingying ; Gan, Lei ; Sun, Jiaxiang ; Dong, Nanqing ; Liu, Di ; Qin, Zhaoming ; Li, Kang ; Hu, Shiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>carbon emission liability</topic><topic>Climate change</topic><topic>Costs</topic><topic>demand response</topic><topic>Emissions trading</topic><topic>Joint electricity and carbon trading</topic><topic>Low-carbon economy</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Real-time systems</topic><topic>Renewable energy sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Haochen</creatorcontrib><creatorcontrib>Chen, Xingying</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Sun, Jiaxiang</creatorcontrib><creatorcontrib>Dong, Nanqing</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Qin, Zhaoming</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Hu, Shiyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial cyber-physical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua, Haochen</au><au>Chen, Xingying</au><au>Gan, Lei</au><au>Sun, Jiaxiang</au><au>Dong, Nanqing</au><au>Liu, Di</au><au>Qin, Zhaoming</au><au>Li, Kang</au><au>Hu, Shiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demand-Side Joint Electricity and Carbon Trading Mechanism</atitle><jtitle>IEEE transactions on industrial cyber-physical systems</jtitle><stitle>TICPS</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>2832-7004</issn><eissn>2832-7004</eissn><coden>ITICCX</coden><abstract>Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.</abstract><pub>IEEE</pub><doi>10.1109/TICPS.2023.3335328</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1399-6292</orcidid><orcidid>https://orcid.org/0000-0003-2512-0634</orcidid><orcidid>https://orcid.org/0000-0002-2464-6178</orcidid><orcidid>https://orcid.org/0009-0009-4558-1885</orcidid><orcidid>https://orcid.org/0000-0001-6657-0522</orcidid><orcidid>https://orcid.org/0000-0002-3341-2947</orcidid><orcidid>https://orcid.org/0000-0001-5052-5663</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2832-7004
ispartof IEEE transactions on industrial cyber-physical systems, 2024, Vol.2, p.14-25
issn 2832-7004
2832-7004
language eng
recordid cdi_crossref_primary_10_1109_TICPS_2023_3335328
source IEEE Electronic Library (IEL)
subjects Carbon dioxide
carbon emission liability
Climate change
Costs
demand response
Emissions trading
Joint electricity and carbon trading
Low-carbon economy
Monte Carlo methods
Optimization
Real-time systems
Renewable energy sources
title Demand-Side Joint Electricity and Carbon Trading Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demand-Side%20Joint%20Electricity%20and%20Carbon%20Trading%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20industrial%20cyber-physical%20systems&rft.au=Hua,%20Haochen&rft.date=2024&rft.volume=2&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=2832-7004&rft.eissn=2832-7004&rft.coden=ITICCX&rft_id=info:doi/10.1109/TICPS.2023.3335328&rft_dat=%3Ccrossref_RIE%3E10_1109_TICPS_2023_3335328%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10330727&rfr_iscdi=true