Demand-Side Joint Electricity and Carbon Trading Mechanism
Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shapin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial cyber-physical systems 2024, Vol.2, p.14-25 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | |
container_start_page | 14 |
container_title | IEEE transactions on industrial cyber-physical systems |
container_volume | 2 |
creator | Hua, Haochen Chen, Xingying Gan, Lei Sun, Jiaxiang Dong, Nanqing Liu, Di Qin, Zhaoming Li, Kang Hu, Shiyan |
description | Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method. |
doi_str_mv | 10.1109/TICPS.2023.3335328 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TICPS_2023_3335328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10330727</ieee_id><sourcerecordid>10_1109_TICPS_2023_3335328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNS-gLjICyTemZvJJO4k1lqpKDSuh_mLjjSJzGTTtze1XXR1D1y-A-cj5JZCRilU9826_thmDBhmiMiRlRdkxkpkqQDIL8_yNVnE-AMArCpYQcWMPDy5TvU23XrrktfB92Oy3DkzBm_8uE-mV1KroIc-aYKyvv9K3pz5Vr2P3Q25atUuusXpzsnn87KpX9LN-2pdP25SQymKlGvaClMp1aIW2qoqV0yAwxwKVxnHmeFc88IooNZOe2xpCsFsbgVwXuUa54Qde00YYgyulb_BdyrsJQV5ECD_BciDAHkSMEF3R8g7584ARBBM4B8rJ1ZV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Demand-Side Joint Electricity and Carbon Trading Mechanism</title><source>IEEE Electronic Library (IEL)</source><creator>Hua, Haochen ; Chen, Xingying ; Gan, Lei ; Sun, Jiaxiang ; Dong, Nanqing ; Liu, Di ; Qin, Zhaoming ; Li, Kang ; Hu, Shiyan</creator><creatorcontrib>Hua, Haochen ; Chen, Xingying ; Gan, Lei ; Sun, Jiaxiang ; Dong, Nanqing ; Liu, Di ; Qin, Zhaoming ; Li, Kang ; Hu, Shiyan</creatorcontrib><description>Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.</description><identifier>ISSN: 2832-7004</identifier><identifier>EISSN: 2832-7004</identifier><identifier>DOI: 10.1109/TICPS.2023.3335328</identifier><identifier>CODEN: ITICCX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Carbon dioxide ; carbon emission liability ; Climate change ; Costs ; demand response ; Emissions trading ; Joint electricity and carbon trading ; Low-carbon economy ; Monte Carlo methods ; Optimization ; Real-time systems ; Renewable energy sources</subject><ispartof>IEEE transactions on industrial cyber-physical systems, 2024, Vol.2, p.14-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</citedby><cites>FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</cites><orcidid>0000-0003-1399-6292 ; 0000-0003-2512-0634 ; 0000-0002-2464-6178 ; 0009-0009-4558-1885 ; 0000-0001-6657-0522 ; 0000-0002-3341-2947 ; 0000-0001-5052-5663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10330727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10330727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hua, Haochen</creatorcontrib><creatorcontrib>Chen, Xingying</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Sun, Jiaxiang</creatorcontrib><creatorcontrib>Dong, Nanqing</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Qin, Zhaoming</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Hu, Shiyan</creatorcontrib><title>Demand-Side Joint Electricity and Carbon Trading Mechanism</title><title>IEEE transactions on industrial cyber-physical systems</title><addtitle>TICPS</addtitle><description>Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.</description><subject>Carbon dioxide</subject><subject>carbon emission liability</subject><subject>Climate change</subject><subject>Costs</subject><subject>demand response</subject><subject>Emissions trading</subject><subject>Joint electricity and carbon trading</subject><subject>Low-carbon economy</subject><subject>Monte Carlo methods</subject><subject>Optimization</subject><subject>Real-time systems</subject><subject>Renewable energy sources</subject><issn>2832-7004</issn><issn>2832-7004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsNS-gLjICyTemZvJJO4k1lqpKDSuh_mLjjSJzGTTtze1XXR1D1y-A-cj5JZCRilU9826_thmDBhmiMiRlRdkxkpkqQDIL8_yNVnE-AMArCpYQcWMPDy5TvU23XrrktfB92Oy3DkzBm_8uE-mV1KroIc-aYKyvv9K3pz5Vr2P3Q25atUuusXpzsnn87KpX9LN-2pdP25SQymKlGvaClMp1aIW2qoqV0yAwxwKVxnHmeFc88IooNZOe2xpCsFsbgVwXuUa54Qde00YYgyulb_BdyrsJQV5ECD_BciDAHkSMEF3R8g7584ARBBM4B8rJ1ZV</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hua, Haochen</creator><creator>Chen, Xingying</creator><creator>Gan, Lei</creator><creator>Sun, Jiaxiang</creator><creator>Dong, Nanqing</creator><creator>Liu, Di</creator><creator>Qin, Zhaoming</creator><creator>Li, Kang</creator><creator>Hu, Shiyan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1399-6292</orcidid><orcidid>https://orcid.org/0000-0003-2512-0634</orcidid><orcidid>https://orcid.org/0000-0002-2464-6178</orcidid><orcidid>https://orcid.org/0009-0009-4558-1885</orcidid><orcidid>https://orcid.org/0000-0001-6657-0522</orcidid><orcidid>https://orcid.org/0000-0002-3341-2947</orcidid><orcidid>https://orcid.org/0000-0001-5052-5663</orcidid></search><sort><creationdate>2024</creationdate><title>Demand-Side Joint Electricity and Carbon Trading Mechanism</title><author>Hua, Haochen ; Chen, Xingying ; Gan, Lei ; Sun, Jiaxiang ; Dong, Nanqing ; Liu, Di ; Qin, Zhaoming ; Li, Kang ; Hu, Shiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1137-5b1f7c9aaf3b7bda94a270e3406e9ce52c55b56ca01dd110d8c672d4d705594b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon dioxide</topic><topic>carbon emission liability</topic><topic>Climate change</topic><topic>Costs</topic><topic>demand response</topic><topic>Emissions trading</topic><topic>Joint electricity and carbon trading</topic><topic>Low-carbon economy</topic><topic>Monte Carlo methods</topic><topic>Optimization</topic><topic>Real-time systems</topic><topic>Renewable energy sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Haochen</creatorcontrib><creatorcontrib>Chen, Xingying</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Sun, Jiaxiang</creatorcontrib><creatorcontrib>Dong, Nanqing</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Qin, Zhaoming</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Hu, Shiyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial cyber-physical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua, Haochen</au><au>Chen, Xingying</au><au>Gan, Lei</au><au>Sun, Jiaxiang</au><au>Dong, Nanqing</au><au>Liu, Di</au><au>Qin, Zhaoming</au><au>Li, Kang</au><au>Hu, Shiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demand-Side Joint Electricity and Carbon Trading Mechanism</atitle><jtitle>IEEE transactions on industrial cyber-physical systems</jtitle><stitle>TICPS</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>2832-7004</issn><eissn>2832-7004</eissn><coden>ITICCX</coden><abstract>Decarbonization of the whole energy chain has been recognized as a measure to tackle the global challenge of climate change, and significant progress has already been made on the generation side to integrate renewable energy. However, the demand side is the single largest underlying factor in shaping decarbonization roadmap. Hence, the carbon emission cost should also be shared by the users according to their power consumption. In this paper, a joint electricity-carbon trading framework is designed to reduce the carbon emission through trading and demand response. A delayed carbon emission liability settlement for asynchronous markets is proposed to ameliorate the users' optimal decision from single-point optimization to interval-based optimization. To develop the optimal strategy of trading within the proposed mechanism, an improved proximal policy optimization (PPO) algorithm based on Monte Carlo reward sampling is applied. Simulation studies reveal that, compared with the market without carbon trading and users without delayed settlement, the proposed mechanism has achieved a carbon emission reduction by 40.7% and 12.7% respectively. Simulations also show the algorithm's training efficiency can be significantly improved with the proposed Monte Carlo sampling method.</abstract><pub>IEEE</pub><doi>10.1109/TICPS.2023.3335328</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1399-6292</orcidid><orcidid>https://orcid.org/0000-0003-2512-0634</orcidid><orcidid>https://orcid.org/0000-0002-2464-6178</orcidid><orcidid>https://orcid.org/0009-0009-4558-1885</orcidid><orcidid>https://orcid.org/0000-0001-6657-0522</orcidid><orcidid>https://orcid.org/0000-0002-3341-2947</orcidid><orcidid>https://orcid.org/0000-0001-5052-5663</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2832-7004 |
ispartof | IEEE transactions on industrial cyber-physical systems, 2024, Vol.2, p.14-25 |
issn | 2832-7004 2832-7004 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TICPS_2023_3335328 |
source | IEEE Electronic Library (IEL) |
subjects | Carbon dioxide carbon emission liability Climate change Costs demand response Emissions trading Joint electricity and carbon trading Low-carbon economy Monte Carlo methods Optimization Real-time systems Renewable energy sources |
title | Demand-Side Joint Electricity and Carbon Trading Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T18%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demand-Side%20Joint%20Electricity%20and%20Carbon%20Trading%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20industrial%20cyber-physical%20systems&rft.au=Hua,%20Haochen&rft.date=2024&rft.volume=2&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=2832-7004&rft.eissn=2832-7004&rft.coden=ITICCX&rft_id=info:doi/10.1109/TICPS.2023.3335328&rft_dat=%3Ccrossref_RIE%3E10_1109_TICPS_2023_3335328%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10330727&rfr_iscdi=true |