Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters

Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2024-10, p.1-13
Hauptverfasser: Glover, Daniel, Dubey, Anamika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on industry applications
container_volume
creator Glover, Daniel
Dubey, Anamika
description Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.
doi_str_mv 10.1109/TIA.2024.3472655
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2024_3472655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704066</ieee_id><sourcerecordid>10_1109_TIA_2024_3472655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-857cb5220a401033b57aea7fa7f7ec1fb9fb1c333c1e639a2fb79c3289f654e83</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKt7Fy6y1MXUfKdZlrFqodCipbgbMvFFR6aTksRC_71T2oXw4G7euVwOQreUjCgl5nE1m4wYYWLEhWZKyjM0oIabwnClz9GAEMMLY4y4RFcp_RBChaRigD7mYGPXdF94HdpcrCdv-CmGsMXlb9xBwjngxTY3G9u2e1yGED-bzmbAy--Qw65HbOPw_XL9gN83NmY863YQM8R0jS68bRPcnHKIVs_TVflazBcvs3IyL5xiqhhL7WrJGLGCUMJ5LbUFq31_Ghz1tfE1dZxzR0FxY5mvtXGcjY1XUsCYDxE51roYUorgq23s18Z9RUl1EFP1YqqDmOokpkfujkgDAP_eNRFEKf4HM-pfRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</title><source>IEEE Electronic Library (IEL)</source><creator>Glover, Daniel ; Dubey, Anamika</creator><creatorcontrib>Glover, Daniel ; Dubey, Anamika</creatorcontrib><description>Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3472655</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Analytical models ; Deep reinforcement learning ; distributed energy resource ; Inverters ; Load flow ; Mathematical models ; Reactive power ; Safety ; Silicon ; smart inverter ; volt-VAR ; Voltage control ; voltage regulation</subject><ispartof>IEEE transactions on industry applications, 2024-10, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5147-9961 ; 0000-0003-3896-7631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10704066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Glover, Daniel</creatorcontrib><creatorcontrib>Dubey, Anamika</creatorcontrib><title>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.</description><subject>Adaptation models</subject><subject>Analytical models</subject><subject>Deep reinforcement learning</subject><subject>distributed energy resource</subject><subject>Inverters</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>Reactive power</subject><subject>Safety</subject><subject>Silicon</subject><subject>smart inverter</subject><subject>volt-VAR</subject><subject>Voltage control</subject><subject>voltage regulation</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKt7Fy6y1MXUfKdZlrFqodCipbgbMvFFR6aTksRC_71T2oXw4G7euVwOQreUjCgl5nE1m4wYYWLEhWZKyjM0oIabwnClz9GAEMMLY4y4RFcp_RBChaRigD7mYGPXdF94HdpcrCdv-CmGsMXlb9xBwjngxTY3G9u2e1yGED-bzmbAy--Qw65HbOPw_XL9gN83NmY863YQM8R0jS68bRPcnHKIVs_TVflazBcvs3IyL5xiqhhL7WrJGLGCUMJ5LbUFq31_Ghz1tfE1dZxzR0FxY5mvtXGcjY1XUsCYDxE51roYUorgq23s18Z9RUl1EFP1YqqDmOokpkfujkgDAP_eNRFEKf4HM-pfRw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Glover, Daniel</creator><creator>Dubey, Anamika</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5147-9961</orcidid><orcidid>https://orcid.org/0000-0003-3896-7631</orcidid></search><sort><creationdate>20241001</creationdate><title>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</title><author>Glover, Daniel ; Dubey, Anamika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-857cb5220a401033b57aea7fa7f7ec1fb9fb1c333c1e639a2fb79c3289f654e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Analytical models</topic><topic>Deep reinforcement learning</topic><topic>distributed energy resource</topic><topic>Inverters</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>Reactive power</topic><topic>Safety</topic><topic>Silicon</topic><topic>smart inverter</topic><topic>volt-VAR</topic><topic>Voltage control</topic><topic>voltage regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glover, Daniel</creatorcontrib><creatorcontrib>Dubey, Anamika</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glover, Daniel</au><au>Dubey, Anamika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-10-01</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2024.3472655</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5147-9961</orcidid><orcidid>https://orcid.org/0000-0003-3896-7631</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2024-10, p.1-13
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2024_3472655
source IEEE Electronic Library (IEL)
subjects Adaptation models
Analytical models
Deep reinforcement learning
distributed energy resource
Inverters
Load flow
Mathematical models
Reactive power
Safety
Silicon
smart inverter
volt-VAR
Voltage control
voltage regulation
title Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Volt-VAR%20Droop%20Curves%20to%20Optimally%20Coordinate%20Photovoltaic%20(PV)%20Smart%20Inverters&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Glover,%20Daniel&rft.date=2024-10-01&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3472655&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2024_3472655%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10704066&rfr_iscdi=true