Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters
Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2024-10, p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on industry applications |
container_volume | |
creator | Glover, Daniel Dubey, Anamika |
description | Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions. |
doi_str_mv | 10.1109/TIA.2024.3472655 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2024_3472655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10704066</ieee_id><sourcerecordid>10_1109_TIA_2024_3472655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-857cb5220a401033b57aea7fa7f7ec1fb9fb1c333c1e639a2fb79c3289f654e83</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKt7Fy6y1MXUfKdZlrFqodCipbgbMvFFR6aTksRC_71T2oXw4G7euVwOQreUjCgl5nE1m4wYYWLEhWZKyjM0oIabwnClz9GAEMMLY4y4RFcp_RBChaRigD7mYGPXdF94HdpcrCdv-CmGsMXlb9xBwjngxTY3G9u2e1yGED-bzmbAy--Qw65HbOPw_XL9gN83NmY863YQM8R0jS68bRPcnHKIVs_TVflazBcvs3IyL5xiqhhL7WrJGLGCUMJ5LbUFq31_Ghz1tfE1dZxzR0FxY5mvtXGcjY1XUsCYDxE51roYUorgq23s18Z9RUl1EFP1YqqDmOokpkfujkgDAP_eNRFEKf4HM-pfRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</title><source>IEEE Electronic Library (IEL)</source><creator>Glover, Daniel ; Dubey, Anamika</creator><creatorcontrib>Glover, Daniel ; Dubey, Anamika</creatorcontrib><description>Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3472655</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Analytical models ; Deep reinforcement learning ; distributed energy resource ; Inverters ; Load flow ; Mathematical models ; Reactive power ; Safety ; Silicon ; smart inverter ; volt-VAR ; Voltage control ; voltage regulation</subject><ispartof>IEEE transactions on industry applications, 2024-10, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5147-9961 ; 0000-0003-3896-7631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10704066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10704066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Glover, Daniel</creatorcontrib><creatorcontrib>Dubey, Anamika</creatorcontrib><title>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.</description><subject>Adaptation models</subject><subject>Analytical models</subject><subject>Deep reinforcement learning</subject><subject>distributed energy resource</subject><subject>Inverters</subject><subject>Load flow</subject><subject>Mathematical models</subject><subject>Reactive power</subject><subject>Safety</subject><subject>Silicon</subject><subject>smart inverter</subject><subject>volt-VAR</subject><subject>Voltage control</subject><subject>voltage regulation</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKt7Fy6y1MXUfKdZlrFqodCipbgbMvFFR6aTksRC_71T2oXw4G7euVwOQreUjCgl5nE1m4wYYWLEhWZKyjM0oIabwnClz9GAEMMLY4y4RFcp_RBChaRigD7mYGPXdF94HdpcrCdv-CmGsMXlb9xBwjngxTY3G9u2e1yGED-bzmbAy--Qw65HbOPw_XL9gN83NmY863YQM8R0jS68bRPcnHKIVs_TVflazBcvs3IyL5xiqhhL7WrJGLGCUMJ5LbUFq31_Ghz1tfE1dZxzR0FxY5mvtXGcjY1XUsCYDxE51roYUorgq23s18Z9RUl1EFP1YqqDmOokpkfujkgDAP_eNRFEKf4HM-pfRw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Glover, Daniel</creator><creator>Dubey, Anamika</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5147-9961</orcidid><orcidid>https://orcid.org/0000-0003-3896-7631</orcidid></search><sort><creationdate>20241001</creationdate><title>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</title><author>Glover, Daniel ; Dubey, Anamika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-857cb5220a401033b57aea7fa7f7ec1fb9fb1c333c1e639a2fb79c3289f654e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Analytical models</topic><topic>Deep reinforcement learning</topic><topic>distributed energy resource</topic><topic>Inverters</topic><topic>Load flow</topic><topic>Mathematical models</topic><topic>Reactive power</topic><topic>Safety</topic><topic>Silicon</topic><topic>smart inverter</topic><topic>volt-VAR</topic><topic>Voltage control</topic><topic>voltage regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glover, Daniel</creatorcontrib><creatorcontrib>Dubey, Anamika</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glover, Daniel</au><au>Dubey, Anamika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-10-01</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2024.3472655</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5147-9961</orcidid><orcidid>https://orcid.org/0000-0003-3896-7631</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2024-10, p.1-13 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2024_3472655 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Analytical models Deep reinforcement learning distributed energy resource Inverters Load flow Mathematical models Reactive power Safety Silicon smart inverter volt-VAR Voltage control voltage regulation |
title | Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Volt-VAR%20Droop%20Curves%20to%20Optimally%20Coordinate%20Photovoltaic%20(PV)%20Smart%20Inverters&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Glover,%20Daniel&rft.date=2024-10-01&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3472655&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2024_3472655%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10704066&rfr_iscdi=true |