SD-Jaya Based Multi-Objective Optimization Algorithm for IRS-Aided Air-to-Ground Task Offloading in Charging Electric Vehicle Networks
The integration of electric vehicles (EVs) into the power grid has led to a significant increase in load demand. However, the absence of efficient edge computing services for charging EVs poses challenges to the grid's safe and stable operation. Our study proposes an intelligent reflective surf...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2024-09, Vol.60 (5), p.7356-7368 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7368 |
---|---|
container_issue | 5 |
container_start_page | 7356 |
container_title | IEEE transactions on industry applications |
container_volume | 60 |
creator | Song, Xin Wang, Yu Xu, Siyang Zhang, Runfeng Zhang, Yuqi Xie, Zhigang |
description | The integration of electric vehicles (EVs) into the power grid has led to a significant increase in load demand. However, the absence of efficient edge computing services for charging EVs poses challenges to the grid's safe and stable operation. Our study proposes an intelligent reflective surface (IRS)-assisted air-to-ground task offloading network for charging EVs that utilizes tethered unmanned aerial vehicles (tUAVs) equipped with IRS for task transmission to provide efficient edge computing services. The network architecture includes single-IRS and double-IRS links to enhance communication efficiency, while EVs are equipped with Network in Box (NIB) units to provide flexible computing power. We formulate a multi-objective optimization problem aimed at minimizing transmission obstacle, power purchase cost, transmission delay, and failure rate in the network. Since the optimization problem is NP-hard, we propose an improved Self-Learning Discrete Jaya (SD-Jaya) algorithm which finds the offloading strategy using historical knowledge and the selection of strategy-related operators. Moreover, we develop a novel tournament-based algorithm to select the Pareto layer in the multi-objective problem. Simulation results show that the proposed algorithm is able to find better non-dominated solutions. The power purchase cost of the proposed scheme is 43\% and 54\% lower than that of the single-IRS scheme and the local scheme, respectively. |
doi_str_mv | 10.1109/TIA.2024.3413048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2024_3413048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10555361</ieee_id><sourcerecordid>3107263137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-bceac6f8a9f714b9522d85420adfcb534acde9ed603cd9258b0d6f00ca6b433</originalsourceid><addsrcrecordid>eNpNkL1OwzAYRS0EEqWwMzBYYnaxYzupx1D-ioBKtGKNHP-0btO42C4IHoDnJlUZmL473HM_6QBwTvCAECyuZuNykOGMDSgjFLPhAegRQQUSNC8OQQ9jQZEQgh2DkxiXGBPGCeuBn-kNepRfEl7LaDR83jbJoUm9NCq5DwMnm-TW7lsm51tYNnMfXFqsofUBjl-nqHS6g0oXUPLoPvhtq-FMxhWcWNt4qV07h66Fo4UM812-bbrd4BR8MwunGgNfTPr0YRVPwZGVTTRnf7cPpne3s9EDeprcj0flE1Kk4AnVykiV26EUtiCsFjzL9JCzDEttVc0pk0obYXSOqdIi48Ma69xirGReM0r74HK_ugn-fWtiqpZ-G9ruYUUJLrKcElp0LbxvqeBjDMZWm-DWMnxVBFc711Xnutq5rv5cd8jFHnHGmH91zjnNCf0FJht7-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107263137</pqid></control><display><type>article</type><title>SD-Jaya Based Multi-Objective Optimization Algorithm for IRS-Aided Air-to-Ground Task Offloading in Charging Electric Vehicle Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Xin ; Wang, Yu ; Xu, Siyang ; Zhang, Runfeng ; Zhang, Yuqi ; Xie, Zhigang</creator><creatorcontrib>Song, Xin ; Wang, Yu ; Xu, Siyang ; Zhang, Runfeng ; Zhang, Yuqi ; Xie, Zhigang</creatorcontrib><description><![CDATA[The integration of electric vehicles (EVs) into the power grid has led to a significant increase in load demand. However, the absence of efficient edge computing services for charging EVs poses challenges to the grid's safe and stable operation. Our study proposes an intelligent reflective surface (IRS)-assisted air-to-ground task offloading network for charging EVs that utilizes tethered unmanned aerial vehicles (tUAVs) equipped with IRS for task transmission to provide efficient edge computing services. The network architecture includes single-IRS and double-IRS links to enhance communication efficiency, while EVs are equipped with Network in Box (NIB) units to provide flexible computing power. We formulate a multi-objective optimization problem aimed at minimizing transmission obstacle, power purchase cost, transmission delay, and failure rate in the network. Since the optimization problem is NP-hard, we propose an improved Self-Learning Discrete Jaya (SD-Jaya) algorithm which finds the offloading strategy using historical knowledge and the selection of strategy-related operators. Moreover, we develop a novel tournament-based algorithm to select the Pareto layer in the multi-objective problem. Simulation results show that the proposed algorithm is able to find better non-dominated solutions. The power purchase cost of the proposed scheme is 43<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 54<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> lower than that of the single-IRS scheme and the local scheme, respectively.]]></description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3413048</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Buildings ; Computation offloading ; Costs ; Edge computing ; Electric vehicle charging ; Electric vehicles ; Electrical loads ; Heuristic algorithms ; IRS ; Machine learning ; MEC ; Multiple objective analysis ; Optimization ; Pareto optimization ; SD-Jaya ; Task analysis ; tUAVs ; Unmanned aerial vehicles ; Urban areas</subject><ispartof>IEEE transactions on industry applications, 2024-09, Vol.60 (5), p.7356-7368</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-bceac6f8a9f714b9522d85420adfcb534acde9ed603cd9258b0d6f00ca6b433</cites><orcidid>0000-0002-0992-8900 ; 0000-0001-6246-1441 ; 0000-0001-6700-8670 ; 0000-0002-6135-0528 ; 0000-0003-1428-3331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10555361$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10555361$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Xin</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Xu, Siyang</creatorcontrib><creatorcontrib>Zhang, Runfeng</creatorcontrib><creatorcontrib>Zhang, Yuqi</creatorcontrib><creatorcontrib>Xie, Zhigang</creatorcontrib><title>SD-Jaya Based Multi-Objective Optimization Algorithm for IRS-Aided Air-to-Ground Task Offloading in Charging Electric Vehicle Networks</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description><![CDATA[The integration of electric vehicles (EVs) into the power grid has led to a significant increase in load demand. However, the absence of efficient edge computing services for charging EVs poses challenges to the grid's safe and stable operation. Our study proposes an intelligent reflective surface (IRS)-assisted air-to-ground task offloading network for charging EVs that utilizes tethered unmanned aerial vehicles (tUAVs) equipped with IRS for task transmission to provide efficient edge computing services. The network architecture includes single-IRS and double-IRS links to enhance communication efficiency, while EVs are equipped with Network in Box (NIB) units to provide flexible computing power. We formulate a multi-objective optimization problem aimed at minimizing transmission obstacle, power purchase cost, transmission delay, and failure rate in the network. Since the optimization problem is NP-hard, we propose an improved Self-Learning Discrete Jaya (SD-Jaya) algorithm which finds the offloading strategy using historical knowledge and the selection of strategy-related operators. Moreover, we develop a novel tournament-based algorithm to select the Pareto layer in the multi-objective problem. Simulation results show that the proposed algorithm is able to find better non-dominated solutions. The power purchase cost of the proposed scheme is 43<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 54<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> lower than that of the single-IRS scheme and the local scheme, respectively.]]></description><subject>Algorithms</subject><subject>Buildings</subject><subject>Computation offloading</subject><subject>Costs</subject><subject>Edge computing</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electrical loads</subject><subject>Heuristic algorithms</subject><subject>IRS</subject><subject>Machine learning</subject><subject>MEC</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>SD-Jaya</subject><subject>Task analysis</subject><subject>tUAVs</subject><subject>Unmanned aerial vehicles</subject><subject>Urban areas</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAYRS0EEqWwMzBYYnaxYzupx1D-ioBKtGKNHP-0btO42C4IHoDnJlUZmL473HM_6QBwTvCAECyuZuNykOGMDSgjFLPhAegRQQUSNC8OQQ9jQZEQgh2DkxiXGBPGCeuBn-kNepRfEl7LaDR83jbJoUm9NCq5DwMnm-TW7lsm51tYNnMfXFqsofUBjl-nqHS6g0oXUPLoPvhtq-FMxhWcWNt4qV07h66Fo4UM812-bbrd4BR8MwunGgNfTPr0YRVPwZGVTTRnf7cPpne3s9EDeprcj0flE1Kk4AnVykiV26EUtiCsFjzL9JCzDEttVc0pk0obYXSOqdIi48Ma69xirGReM0r74HK_ugn-fWtiqpZ-G9ruYUUJLrKcElp0LbxvqeBjDMZWm-DWMnxVBFc711Xnutq5rv5cd8jFHnHGmH91zjnNCf0FJht7-g</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Song, Xin</creator><creator>Wang, Yu</creator><creator>Xu, Siyang</creator><creator>Zhang, Runfeng</creator><creator>Zhang, Yuqi</creator><creator>Xie, Zhigang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0992-8900</orcidid><orcidid>https://orcid.org/0000-0001-6246-1441</orcidid><orcidid>https://orcid.org/0000-0001-6700-8670</orcidid><orcidid>https://orcid.org/0000-0002-6135-0528</orcidid><orcidid>https://orcid.org/0000-0003-1428-3331</orcidid></search><sort><creationdate>202409</creationdate><title>SD-Jaya Based Multi-Objective Optimization Algorithm for IRS-Aided Air-to-Ground Task Offloading in Charging Electric Vehicle Networks</title><author>Song, Xin ; Wang, Yu ; Xu, Siyang ; Zhang, Runfeng ; Zhang, Yuqi ; Xie, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-bceac6f8a9f714b9522d85420adfcb534acde9ed603cd9258b0d6f00ca6b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Buildings</topic><topic>Computation offloading</topic><topic>Costs</topic><topic>Edge computing</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electrical loads</topic><topic>Heuristic algorithms</topic><topic>IRS</topic><topic>Machine learning</topic><topic>MEC</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>SD-Jaya</topic><topic>Task analysis</topic><topic>tUAVs</topic><topic>Unmanned aerial vehicles</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xin</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Xu, Siyang</creatorcontrib><creatorcontrib>Zhang, Runfeng</creatorcontrib><creatorcontrib>Zhang, Yuqi</creatorcontrib><creatorcontrib>Xie, Zhigang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Xin</au><au>Wang, Yu</au><au>Xu, Siyang</au><au>Zhang, Runfeng</au><au>Zhang, Yuqi</au><au>Xie, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SD-Jaya Based Multi-Objective Optimization Algorithm for IRS-Aided Air-to-Ground Task Offloading in Charging Electric Vehicle Networks</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-09</date><risdate>2024</risdate><volume>60</volume><issue>5</issue><spage>7356</spage><epage>7368</epage><pages>7356-7368</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract><![CDATA[The integration of electric vehicles (EVs) into the power grid has led to a significant increase in load demand. However, the absence of efficient edge computing services for charging EVs poses challenges to the grid's safe and stable operation. Our study proposes an intelligent reflective surface (IRS)-assisted air-to-ground task offloading network for charging EVs that utilizes tethered unmanned aerial vehicles (tUAVs) equipped with IRS for task transmission to provide efficient edge computing services. The network architecture includes single-IRS and double-IRS links to enhance communication efficiency, while EVs are equipped with Network in Box (NIB) units to provide flexible computing power. We formulate a multi-objective optimization problem aimed at minimizing transmission obstacle, power purchase cost, transmission delay, and failure rate in the network. Since the optimization problem is NP-hard, we propose an improved Self-Learning Discrete Jaya (SD-Jaya) algorithm which finds the offloading strategy using historical knowledge and the selection of strategy-related operators. Moreover, we develop a novel tournament-based algorithm to select the Pareto layer in the multi-objective problem. Simulation results show that the proposed algorithm is able to find better non-dominated solutions. The power purchase cost of the proposed scheme is 43<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> and 54<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula> lower than that of the single-IRS scheme and the local scheme, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2024.3413048</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0992-8900</orcidid><orcidid>https://orcid.org/0000-0001-6246-1441</orcidid><orcidid>https://orcid.org/0000-0001-6700-8670</orcidid><orcidid>https://orcid.org/0000-0002-6135-0528</orcidid><orcidid>https://orcid.org/0000-0003-1428-3331</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2024-09, Vol.60 (5), p.7356-7368 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2024_3413048 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Buildings Computation offloading Costs Edge computing Electric vehicle charging Electric vehicles Electrical loads Heuristic algorithms IRS Machine learning MEC Multiple objective analysis Optimization Pareto optimization SD-Jaya Task analysis tUAVs Unmanned aerial vehicles Urban areas |
title | SD-Jaya Based Multi-Objective Optimization Algorithm for IRS-Aided Air-to-Ground Task Offloading in Charging Electric Vehicle Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SD-Jaya%20Based%20Multi-Objective%20Optimization%20Algorithm%20for%20IRS-Aided%20Air-to-Ground%20Task%20Offloading%20in%20Charging%20Electric%20Vehicle%20Networks&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Song,%20Xin&rft.date=2024-09&rft.volume=60&rft.issue=5&rft.spage=7356&rft.epage=7368&rft.pages=7356-7368&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3413048&rft_dat=%3Cproquest_RIE%3E3107263137%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107263137&rft_id=info:pmid/&rft_ieee_id=10555361&rfr_iscdi=true |