Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry

Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2022-05, Vol.58 (3), p.4225-4232
Hauptverfasser: Elsahwi, Essam S., Hopp, Conrad E., Dawson, Francis P., Ruda, Harry E., Kirk, Donald W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4232
container_issue 3
container_start_page 4225
container_title IEEE transactions on industry applications
container_volume 58
creator Elsahwi, Essam S.
Hopp, Conrad E.
Dawson, Francis P.
Ruda, Harry E.
Kirk, Donald W.
description Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO_{2}/Ti and RuO_{2}/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m^{2}, where the number of cells required for treatment is minimized.
doi_str_mv 10.1109/TIA.2022.3152713
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2022_3152713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718138</ieee_id><sourcerecordid>2667017759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wc2A66m5ybyyLMVHodJNxWXIJDc2pZOpSYr23zulxdWFw3fOhY-Qe6ATACqeVvPphFHGJhxKVgO_ICMQXOSCV_UlGVEqeC6EKK7JTYwbSqEooRiRxfMWdQq9XmPntNpmy19nVHK9z3qbTbuu907lC2XQZ58qJvxRCUPmfJbWmL077_xXNvdmH1M43JIrq7YR7853TD5enlezt3yxfJ3PpotcM1qlHMEy1YK2HDUwtMzQBoBTAYVghlmB1jRWKKtabYaAsbJmLWrTat5W1PIxeTzt7kL_vceY5KbfBz-8lKyqagp1XYqBoidKhz7GgFbugutUOEig8uhMDs7k0Zk8OxsqD6eKQ8R_XNTQAG_4HybIaLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667017759</pqid></control><display><type>article</type><title>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</title><source>IEEE Electronic Library (IEL)</source><creator>Elsahwi, Essam S. ; Hopp, Conrad E. ; Dawson, Francis P. ; Ruda, Harry E. ; Kirk, Donald W.</creator><creatorcontrib>Elsahwi, Essam S. ; Hopp, Conrad E. ; Dawson, Francis P. ; Ruda, Harry E. ; Kirk, Donald W.</creatorcontrib><description><![CDATA[Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti and RuO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m<inline-formula><tex-math notation="LaTeX">^{2}</tex-math></inline-formula>, where the number of cells required for treatment is minimized.]]></description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3152713</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ammonia ; Ammonia decomposition ; ammonia mineraliza- tion ; Ammonium nitrate ; Biological activity ; Biology ; Capital costs ; Contaminants ; Costs ; Current density ; economic framework ; Electrochemical oxidation ; electrochemical wastewater treatment ; Fuel oils ; Human wastes ; Ions ; Metal oxides ; mine waste removal ; Mining ; Mining industry ; Monte Carlo simulation ; Municipalities ; Natural resources ; Nitrification ; Nitrogen ; Operating costs ; Oxidation ; Soil contamination ; Titanium ; Wastewater treatment ; Water treatment</subject><ispartof>IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.4225-4232</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</citedby><cites>FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</cites><orcidid>0000-0003-1918-5749 ; 0000-0002-9469-3500 ; 0000-0001-6883-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Hopp, Conrad E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Kirk, Donald W.</creatorcontrib><title>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description><![CDATA[Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti and RuO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m<inline-formula><tex-math notation="LaTeX">^{2}</tex-math></inline-formula>, where the number of cells required for treatment is minimized.]]></description><subject>Ammonia</subject><subject>Ammonia decomposition</subject><subject>ammonia mineraliza- tion</subject><subject>Ammonium nitrate</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Capital costs</subject><subject>Contaminants</subject><subject>Costs</subject><subject>Current density</subject><subject>economic framework</subject><subject>Electrochemical oxidation</subject><subject>electrochemical wastewater treatment</subject><subject>Fuel oils</subject><subject>Human wastes</subject><subject>Ions</subject><subject>Metal oxides</subject><subject>mine waste removal</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Monte Carlo simulation</subject><subject>Municipalities</subject><subject>Natural resources</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Operating costs</subject><subject>Oxidation</subject><subject>Soil contamination</subject><subject>Titanium</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wc2A66m5ybyyLMVHodJNxWXIJDc2pZOpSYr23zulxdWFw3fOhY-Qe6ATACqeVvPphFHGJhxKVgO_ICMQXOSCV_UlGVEqeC6EKK7JTYwbSqEooRiRxfMWdQq9XmPntNpmy19nVHK9z3qbTbuu907lC2XQZ58qJvxRCUPmfJbWmL077_xXNvdmH1M43JIrq7YR7853TD5enlezt3yxfJ3PpotcM1qlHMEy1YK2HDUwtMzQBoBTAYVghlmB1jRWKKtabYaAsbJmLWrTat5W1PIxeTzt7kL_vceY5KbfBz-8lKyqagp1XYqBoidKhz7GgFbugutUOEig8uhMDs7k0Zk8OxsqD6eKQ8R_XNTQAG_4HybIaLE</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Elsahwi, Essam S.</creator><creator>Hopp, Conrad E.</creator><creator>Dawson, Francis P.</creator><creator>Ruda, Harry E.</creator><creator>Kirk, Donald W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0002-9469-3500</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></search><sort><creationdate>20220501</creationdate><title>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</title><author>Elsahwi, Essam S. ; Hopp, Conrad E. ; Dawson, Francis P. ; Ruda, Harry E. ; Kirk, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Ammonia decomposition</topic><topic>ammonia mineraliza- tion</topic><topic>Ammonium nitrate</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Capital costs</topic><topic>Contaminants</topic><topic>Costs</topic><topic>Current density</topic><topic>economic framework</topic><topic>Electrochemical oxidation</topic><topic>electrochemical wastewater treatment</topic><topic>Fuel oils</topic><topic>Human wastes</topic><topic>Ions</topic><topic>Metal oxides</topic><topic>mine waste removal</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Monte Carlo simulation</topic><topic>Municipalities</topic><topic>Natural resources</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Operating costs</topic><topic>Oxidation</topic><topic>Soil contamination</topic><topic>Titanium</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Hopp, Conrad E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Kirk, Donald W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elsahwi, Essam S.</au><au>Hopp, Conrad E.</au><au>Dawson, Francis P.</au><au>Ruda, Harry E.</au><au>Kirk, Donald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>4225</spage><epage>4232</epage><pages>4225-4232</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract><![CDATA[Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti and RuO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m<inline-formula><tex-math notation="LaTeX">^{2}</tex-math></inline-formula>, where the number of cells required for treatment is minimized.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3152713</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0002-9469-3500</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.4225-4232
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2022_3152713
source IEEE Electronic Library (IEL)
subjects Ammonia
Ammonia decomposition
ammonia mineraliza- tion
Ammonium nitrate
Biological activity
Biology
Capital costs
Contaminants
Costs
Current density
economic framework
Electrochemical oxidation
electrochemical wastewater treatment
Fuel oils
Human wastes
Ions
Metal oxides
mine waste removal
Mining
Mining industry
Monte Carlo simulation
Municipalities
Natural resources
Nitrification
Nitrogen
Operating costs
Oxidation
Soil contamination
Titanium
Wastewater treatment
Water treatment
title Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Oxidation%20of%20Ammonia-Laden%20Wastewater%20in%20the%20Mining%20Industry&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Elsahwi,%20Essam%20S.&rft.date=2022-05-01&rft.volume=58&rft.issue=3&rft.spage=4225&rft.epage=4232&rft.pages=4225-4232&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3152713&rft_dat=%3Cproquest_RIE%3E2667017759%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667017759&rft_id=info:pmid/&rft_ieee_id=9718138&rfr_iscdi=true