Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry
Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2022-05, Vol.58 (3), p.4225-4232 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4232 |
---|---|
container_issue | 3 |
container_start_page | 4225 |
container_title | IEEE transactions on industry applications |
container_volume | 58 |
creator | Elsahwi, Essam S. Hopp, Conrad E. Dawson, Francis P. Ruda, Harry E. Kirk, Donald W. |
description | Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO_{2}/Ti and RuO_{2}/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m^{2}, where the number of cells required for treatment is minimized. |
doi_str_mv | 10.1109/TIA.2022.3152713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2022_3152713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718138</ieee_id><sourcerecordid>2667017759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wc2A66m5ybyyLMVHodJNxWXIJDc2pZOpSYr23zulxdWFw3fOhY-Qe6ATACqeVvPphFHGJhxKVgO_ICMQXOSCV_UlGVEqeC6EKK7JTYwbSqEooRiRxfMWdQq9XmPntNpmy19nVHK9z3qbTbuu907lC2XQZ58qJvxRCUPmfJbWmL077_xXNvdmH1M43JIrq7YR7853TD5enlezt3yxfJ3PpotcM1qlHMEy1YK2HDUwtMzQBoBTAYVghlmB1jRWKKtabYaAsbJmLWrTat5W1PIxeTzt7kL_vceY5KbfBz-8lKyqagp1XYqBoidKhz7GgFbugutUOEig8uhMDs7k0Zk8OxsqD6eKQ8R_XNTQAG_4HybIaLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667017759</pqid></control><display><type>article</type><title>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</title><source>IEEE Electronic Library (IEL)</source><creator>Elsahwi, Essam S. ; Hopp, Conrad E. ; Dawson, Francis P. ; Ruda, Harry E. ; Kirk, Donald W.</creator><creatorcontrib>Elsahwi, Essam S. ; Hopp, Conrad E. ; Dawson, Francis P. ; Ruda, Harry E. ; Kirk, Donald W.</creatorcontrib><description><![CDATA[Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti and RuO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m<inline-formula><tex-math notation="LaTeX">^{2}</tex-math></inline-formula>, where the number of cells required for treatment is minimized.]]></description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2022.3152713</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ammonia ; Ammonia decomposition ; ammonia mineraliza- tion ; Ammonium nitrate ; Biological activity ; Biology ; Capital costs ; Contaminants ; Costs ; Current density ; economic framework ; Electrochemical oxidation ; electrochemical wastewater treatment ; Fuel oils ; Human wastes ; Ions ; Metal oxides ; mine waste removal ; Mining ; Mining industry ; Monte Carlo simulation ; Municipalities ; Natural resources ; Nitrification ; Nitrogen ; Operating costs ; Oxidation ; Soil contamination ; Titanium ; Wastewater treatment ; Water treatment</subject><ispartof>IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.4225-4232</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</citedby><cites>FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</cites><orcidid>0000-0003-1918-5749 ; 0000-0002-9469-3500 ; 0000-0001-6883-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Hopp, Conrad E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Kirk, Donald W.</creatorcontrib><title>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description><![CDATA[Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti and RuO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m<inline-formula><tex-math notation="LaTeX">^{2}</tex-math></inline-formula>, where the number of cells required for treatment is minimized.]]></description><subject>Ammonia</subject><subject>Ammonia decomposition</subject><subject>ammonia mineraliza- tion</subject><subject>Ammonium nitrate</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Capital costs</subject><subject>Contaminants</subject><subject>Costs</subject><subject>Current density</subject><subject>economic framework</subject><subject>Electrochemical oxidation</subject><subject>electrochemical wastewater treatment</subject><subject>Fuel oils</subject><subject>Human wastes</subject><subject>Ions</subject><subject>Metal oxides</subject><subject>mine waste removal</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Monte Carlo simulation</subject><subject>Municipalities</subject><subject>Natural resources</subject><subject>Nitrification</subject><subject>Nitrogen</subject><subject>Operating costs</subject><subject>Oxidation</subject><subject>Soil contamination</subject><subject>Titanium</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wc2A66m5ybyyLMVHodJNxWXIJDc2pZOpSYr23zulxdWFw3fOhY-Qe6ATACqeVvPphFHGJhxKVgO_ICMQXOSCV_UlGVEqeC6EKK7JTYwbSqEooRiRxfMWdQq9XmPntNpmy19nVHK9z3qbTbuu907lC2XQZ58qJvxRCUPmfJbWmL077_xXNvdmH1M43JIrq7YR7853TD5enlezt3yxfJ3PpotcM1qlHMEy1YK2HDUwtMzQBoBTAYVghlmB1jRWKKtabYaAsbJmLWrTat5W1PIxeTzt7kL_vceY5KbfBz-8lKyqagp1XYqBoidKhz7GgFbugutUOEig8uhMDs7k0Zk8OxsqD6eKQ8R_XNTQAG_4HybIaLE</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Elsahwi, Essam S.</creator><creator>Hopp, Conrad E.</creator><creator>Dawson, Francis P.</creator><creator>Ruda, Harry E.</creator><creator>Kirk, Donald W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0002-9469-3500</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></search><sort><creationdate>20220501</creationdate><title>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</title><author>Elsahwi, Essam S. ; Hopp, Conrad E. ; Dawson, Francis P. ; Ruda, Harry E. ; Kirk, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-e1f2ab1cf3ec12ef2d08113091492d2f9efd8f9afabcd2d222572becdbc3b60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Ammonia decomposition</topic><topic>ammonia mineraliza- tion</topic><topic>Ammonium nitrate</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Capital costs</topic><topic>Contaminants</topic><topic>Costs</topic><topic>Current density</topic><topic>economic framework</topic><topic>Electrochemical oxidation</topic><topic>electrochemical wastewater treatment</topic><topic>Fuel oils</topic><topic>Human wastes</topic><topic>Ions</topic><topic>Metal oxides</topic><topic>mine waste removal</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Monte Carlo simulation</topic><topic>Municipalities</topic><topic>Natural resources</topic><topic>Nitrification</topic><topic>Nitrogen</topic><topic>Operating costs</topic><topic>Oxidation</topic><topic>Soil contamination</topic><topic>Titanium</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elsahwi, Essam S.</creatorcontrib><creatorcontrib>Hopp, Conrad E.</creatorcontrib><creatorcontrib>Dawson, Francis P.</creatorcontrib><creatorcontrib>Ruda, Harry E.</creatorcontrib><creatorcontrib>Kirk, Donald W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elsahwi, Essam S.</au><au>Hopp, Conrad E.</au><au>Dawson, Francis P.</au><au>Ruda, Harry E.</au><au>Kirk, Donald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>58</volume><issue>3</issue><spage>4225</spage><epage>4232</epage><pages>4225-4232</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract><![CDATA[Ammonia is a common contaminant in municipalities where human waste causes nitrification of local water bodies. In mining, ammonia contamination occurs as a byproduct of biological water treatment, from the use of ammonium nitrate fuel oil in explosives, and from the exposure of ammonia rich soils during the excavation process. In particular, gold mine effluent represents a significant source of ammonia and nitrogen-based contaminants. Current biological and abiotic treatment processes are difficult to employ at the scale required at mine sites due to the high operating costs, or are limited in effectiveness due to a lack of natural resources required to facilitate the treatment. This article evaluates the use of electrooxidation as a cost effective alternative to treating ammonia-laden wastewater in mining applications. Two mixed metal oxide electrodes are assessed in this article: IrO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti and RuO<inline-formula><tex-math notation="LaTeX">_{2}</tex-math></inline-formula>/Ti anodes. A Monte Carlo simulation is performed to determine a probabilistic range of capital and operating expenditure for a mining operation deploying an electrooxidation wastewater treatment system. The lowest capital cost of operating the electrochemical treatment occurs at a current density of 200 A/m<inline-formula><tex-math notation="LaTeX">^{2}</tex-math></inline-formula>, where the number of cells required for treatment is minimized.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2022.3152713</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1918-5749</orcidid><orcidid>https://orcid.org/0000-0002-9469-3500</orcidid><orcidid>https://orcid.org/0000-0001-6883-7753</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2022-05, Vol.58 (3), p.4225-4232 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2022_3152713 |
source | IEEE Electronic Library (IEL) |
subjects | Ammonia Ammonia decomposition ammonia mineraliza- tion Ammonium nitrate Biological activity Biology Capital costs Contaminants Costs Current density economic framework Electrochemical oxidation electrochemical wastewater treatment Fuel oils Human wastes Ions Metal oxides mine waste removal Mining Mining industry Monte Carlo simulation Municipalities Natural resources Nitrification Nitrogen Operating costs Oxidation Soil contamination Titanium Wastewater treatment Water treatment |
title | Electrochemical Oxidation of Ammonia-Laden Wastewater in the Mining Industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Oxidation%20of%20Ammonia-Laden%20Wastewater%20in%20the%20Mining%20Industry&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Elsahwi,%20Essam%20S.&rft.date=2022-05-01&rft.volume=58&rft.issue=3&rft.spage=4225&rft.epage=4232&rft.pages=4225-4232&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2022.3152713&rft_dat=%3Cproquest_RIE%3E2667017759%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667017759&rft_id=info:pmid/&rft_ieee_id=9718138&rfr_iscdi=true |