Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications
This article consists of two important topics regarding variable flux memory motors (VFMMs). The first topic is magnetization characteristic analysis of VFMMs having a double-layer permanent magnet (PM). Two-dimensional simulations are executed to clarify relationship between magnetization character...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2021-07, Vol.57 (4), p.3545-3561 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3561 |
---|---|
container_issue | 4 |
container_start_page | 3545 |
container_title | IEEE transactions on industry applications |
container_volume | 57 |
creator | Tsunata, Ren Takemoto, Masatsugu Ogasawara, Satoshi Orikawa, Koji |
description | This article consists of two important topics regarding variable flux memory motors (VFMMs). The first topic is magnetization characteristic analysis of VFMMs having a double-layer permanent magnet (PM). Two-dimensional simulations are executed to clarify relationship between magnetization characteristic and ratio of the double-layer PM. In addition, a prototype of a compact size VFMM is fabricated, and experiments are also carried out to investigate accuracy of magnetization characteristic analysis. The second topic is the proposed VFMM employing double-layer delta-type PM arrangements and extended flux barriers for traction applications. Conventional VFMMs have three critical issues, which are as follows: asymmetric positive and negative magnetizing current pulses, increase in the iron loss due to harmonics caused by demagnetized variable flux PMs (VPMs), and unintentional demagnetization of VPMs under load condition. The proposed VFMM can overcome the abovementioned problems by employing double-layer delta-type PM arrangements and extended flux barriers. In addition, the proposed VFMM achieves much higher efficiency than that of the target motor mounted in TOYOTA Prius fourth-generation over a wide operating range. |
doi_str_mv | 10.1109/TIA.2021.3068329 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2021_3068329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9387595</ieee_id><sourcerecordid>2552160939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-c21981e6530b315ce06873d13f3410990560d01e3693bc73f742ede3ce2f49b63</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFbvgpcFz6m7O5uke4y11UKKHqLXsEkmJSXJxk0CBvzxbmnxNHN43zfMI-SeswXnTD0l22ghmOALYMEShLogM65AeQqC8JLMGFPgKaXkNbnp-wNjXPpczsjvl7aVzmqkm3r8oTtsjJ3ozgzG0nXT1Waq2j19MaNDvFhPaOkL1oP2kqlD-rGjkbW63WOD7UB1W9BY2_257FlbW7lA6boSq_OhMi2Nuq6ucn3c-1tyVeq6x7vznJPPzTpZvXnx--t2FcVeLpkcvFxwteQY-MAy4H6O7sMQCg4lSPe6Yn7ACsYRAgVZHkIZSoEFQo6ilCoLYE4eT72dNd8j9kN6MKNt3clU-L7ggZOjHMVOVG5N31ss085WjbZTyll6dJw6x-nRcXp27CIPp0iFiP-4gmXoKx_-AIjYd2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552160939</pqid></control><display><type>article</type><title>Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Tsunata, Ren ; Takemoto, Masatsugu ; Ogasawara, Satoshi ; Orikawa, Koji</creator><creatorcontrib>Tsunata, Ren ; Takemoto, Masatsugu ; Ogasawara, Satoshi ; Orikawa, Koji</creatorcontrib><description>This article consists of two important topics regarding variable flux memory motors (VFMMs). The first topic is magnetization characteristic analysis of VFMMs having a double-layer permanent magnet (PM). Two-dimensional simulations are executed to clarify relationship between magnetization characteristic and ratio of the double-layer PM. In addition, a prototype of a compact size VFMM is fabricated, and experiments are also carried out to investigate accuracy of magnetization characteristic analysis. The second topic is the proposed VFMM employing double-layer delta-type PM arrangements and extended flux barriers for traction applications. Conventional VFMMs have three critical issues, which are as follows: asymmetric positive and negative magnetizing current pulses, increase in the iron loss due to harmonics caused by demagnetized variable flux PMs (VPMs), and unintentional demagnetization of VPMs under load condition. The proposed VFMM can overcome the abovementioned problems by employing double-layer delta-type PM arrangements and extended flux barriers. In addition, the proposed VFMM achieves much higher efficiency than that of the target motor mounted in TOYOTA Prius fourth-generation over a wide operating range.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2021.3068329</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Core loss ; Current pulses ; Delta-type permanent magnet (PM) arrangement ; Demagnetization ; double-layer PM ; extended flux barrier ; Flux ; hybrid magnet ; Iron ; Magnetic circuits ; Magnetic flux ; Magnetization ; Permanent magnets ; Rotors ; symmetric magnetizing current pulse ; Torque ; Traction ; variable flux memory motor (VFMMs)</subject><ispartof>IEEE transactions on industry applications, 2021-07, Vol.57 (4), p.3545-3561</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-c21981e6530b315ce06873d13f3410990560d01e3693bc73f742ede3ce2f49b63</citedby><cites>FETCH-LOGICAL-c404t-c21981e6530b315ce06873d13f3410990560d01e3693bc73f742ede3ce2f49b63</cites><orcidid>0000-0001-7072-1274 ; 0000-0002-3188-2435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9387595$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9387595$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsunata, Ren</creatorcontrib><creatorcontrib>Takemoto, Masatsugu</creatorcontrib><creatorcontrib>Ogasawara, Satoshi</creatorcontrib><creatorcontrib>Orikawa, Koji</creatorcontrib><title>Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This article consists of two important topics regarding variable flux memory motors (VFMMs). The first topic is magnetization characteristic analysis of VFMMs having a double-layer permanent magnet (PM). Two-dimensional simulations are executed to clarify relationship between magnetization characteristic and ratio of the double-layer PM. In addition, a prototype of a compact size VFMM is fabricated, and experiments are also carried out to investigate accuracy of magnetization characteristic analysis. The second topic is the proposed VFMM employing double-layer delta-type PM arrangements and extended flux barriers for traction applications. Conventional VFMMs have three critical issues, which are as follows: asymmetric positive and negative magnetizing current pulses, increase in the iron loss due to harmonics caused by demagnetized variable flux PMs (VPMs), and unintentional demagnetization of VPMs under load condition. The proposed VFMM can overcome the abovementioned problems by employing double-layer delta-type PM arrangements and extended flux barriers. In addition, the proposed VFMM achieves much higher efficiency than that of the target motor mounted in TOYOTA Prius fourth-generation over a wide operating range.</description><subject>Core loss</subject><subject>Current pulses</subject><subject>Delta-type permanent magnet (PM) arrangement</subject><subject>Demagnetization</subject><subject>double-layer PM</subject><subject>extended flux barrier</subject><subject>Flux</subject><subject>hybrid magnet</subject><subject>Iron</subject><subject>Magnetic circuits</subject><subject>Magnetic flux</subject><subject>Magnetization</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>symmetric magnetizing current pulse</subject><subject>Torque</subject><subject>Traction</subject><subject>variable flux memory motor (VFMMs)</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFbvgpcFz6m7O5uke4y11UKKHqLXsEkmJSXJxk0CBvzxbmnxNHN43zfMI-SeswXnTD0l22ghmOALYMEShLogM65AeQqC8JLMGFPgKaXkNbnp-wNjXPpczsjvl7aVzmqkm3r8oTtsjJ3ozgzG0nXT1Waq2j19MaNDvFhPaOkL1oP2kqlD-rGjkbW63WOD7UB1W9BY2_257FlbW7lA6boSq_OhMi2Nuq6ucn3c-1tyVeq6x7vznJPPzTpZvXnx--t2FcVeLpkcvFxwteQY-MAy4H6O7sMQCg4lSPe6Yn7ACsYRAgVZHkIZSoEFQo6ilCoLYE4eT72dNd8j9kN6MKNt3clU-L7ggZOjHMVOVG5N31ss085WjbZTyll6dJw6x-nRcXp27CIPp0iFiP-4gmXoKx_-AIjYd2I</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Tsunata, Ren</creator><creator>Takemoto, Masatsugu</creator><creator>Ogasawara, Satoshi</creator><creator>Orikawa, Koji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7072-1274</orcidid><orcidid>https://orcid.org/0000-0002-3188-2435</orcidid></search><sort><creationdate>20210701</creationdate><title>Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications</title><author>Tsunata, Ren ; Takemoto, Masatsugu ; Ogasawara, Satoshi ; Orikawa, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-c21981e6530b315ce06873d13f3410990560d01e3693bc73f742ede3ce2f49b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Core loss</topic><topic>Current pulses</topic><topic>Delta-type permanent magnet (PM) arrangement</topic><topic>Demagnetization</topic><topic>double-layer PM</topic><topic>extended flux barrier</topic><topic>Flux</topic><topic>hybrid magnet</topic><topic>Iron</topic><topic>Magnetic circuits</topic><topic>Magnetic flux</topic><topic>Magnetization</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>symmetric magnetizing current pulse</topic><topic>Torque</topic><topic>Traction</topic><topic>variable flux memory motor (VFMMs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsunata, Ren</creatorcontrib><creatorcontrib>Takemoto, Masatsugu</creatorcontrib><creatorcontrib>Ogasawara, Satoshi</creatorcontrib><creatorcontrib>Orikawa, Koji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsunata, Ren</au><au>Takemoto, Masatsugu</au><au>Ogasawara, Satoshi</au><au>Orikawa, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>57</volume><issue>4</issue><spage>3545</spage><epage>3561</epage><pages>3545-3561</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This article consists of two important topics regarding variable flux memory motors (VFMMs). The first topic is magnetization characteristic analysis of VFMMs having a double-layer permanent magnet (PM). Two-dimensional simulations are executed to clarify relationship between magnetization characteristic and ratio of the double-layer PM. In addition, a prototype of a compact size VFMM is fabricated, and experiments are also carried out to investigate accuracy of magnetization characteristic analysis. The second topic is the proposed VFMM employing double-layer delta-type PM arrangements and extended flux barriers for traction applications. Conventional VFMMs have three critical issues, which are as follows: asymmetric positive and negative magnetizing current pulses, increase in the iron loss due to harmonics caused by demagnetized variable flux PMs (VPMs), and unintentional demagnetization of VPMs under load condition. The proposed VFMM can overcome the abovementioned problems by employing double-layer delta-type PM arrangements and extended flux barriers. In addition, the proposed VFMM achieves much higher efficiency than that of the target motor mounted in TOYOTA Prius fourth-generation over a wide operating range.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2021.3068329</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7072-1274</orcidid><orcidid>https://orcid.org/0000-0002-3188-2435</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2021-07, Vol.57 (4), p.3545-3561 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2021_3068329 |
source | IEEE Electronic Library (IEL) |
subjects | Core loss Current pulses Delta-type permanent magnet (PM) arrangement Demagnetization double-layer PM extended flux barrier Flux hybrid magnet Iron Magnetic circuits Magnetic flux Magnetization Permanent magnets Rotors symmetric magnetizing current pulse Torque Traction variable flux memory motor (VFMMs) |
title | Variable Flux Memory Motor Employing Double-Layer Delta-Type PM Arrangement and Large Flux Barrier for Traction Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Flux%20Memory%20Motor%20Employing%20Double-Layer%20Delta-Type%20PM%20Arrangement%20and%20Large%20Flux%20Barrier%20for%20Traction%20Applications&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Tsunata,%20Ren&rft.date=2021-07-01&rft.volume=57&rft.issue=4&rft.spage=3545&rft.epage=3561&rft.pages=3545-3561&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2021.3068329&rft_dat=%3Cproquest_RIE%3E2552160939%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552160939&rft_id=info:pmid/&rft_ieee_id=9387595&rfr_iscdi=true |