Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques

A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5603-5612
Hauptverfasser: Selvi, M. Vetri, Mishra, Sukumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5612
container_issue 5
container_start_page 5603
container_title IEEE transactions on industry applications
container_volume 56
creator Selvi, M. Vetri
Mishra, Sukumar
description A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.
doi_str_mv 10.1109/TIA.2020.3009313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2020_3009313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9140425</ieee_id><sourcerecordid>2444617622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</originalsourceid><addsrcrecordid>eNo9UUtr20AQFqWFuknvhV4WepazL0veowlxYnAeFJcexUQ7sjeVd93ZVUzz__q_ssIhp2Fmvhd8RfFN8KkQ3FxsVoup5JJPFedGCfWhmAijTGlUVX8sJuOxNMboz8WXGJ84F3om9KT4v_LPGJPbQnLBs9CxB6Qu0B58i-N61WObyLVsHcCyh3BEYstA2EJm-S1znt0OfXKHHtnG7ZHdBHIvwUf226Udu8MjW1C7cynLDITsJ0LvXtC-E5-BHCRka-cRKP-3hDGOYcBbtkS0ZfY7AtksNhD0eaRjoD9sg-3Ou78DxvPiUwd9xK9v86z4tbzaXN6U6_vr1eViXbbSiFR2jwaq2tZcPLaoZqJGY3mtlJWmmmujQXe6niluhBaIlbEoYW6lAIVzC8DVWfHjpHugMPqm5ikM5LNlI7XWlagrKTOKn1AthRgJu-ZAbg_0rxG8GctqclnNWFbzVlamfD9RHCK-w3MOruVMvQJUjpQP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444617622</pqid></control><display><type>article</type><title>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Selvi, M. Vetri ; Mishra, Sukumar</creator><creatorcontrib>Selvi, M. Vetri ; Mishra, Sukumar</creatorcontrib><description>A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.3009313</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Architecture ; Artificial neural network (ANN) ; Biological system modeling ; day-ahead forecasting ; Delhi ; Economic forecasting ; electric load power forecasting (ELPF) ; Electric power distribution ; feed-forward neural network (FFNN) ; Forecasting ; Lead time ; Linear regression ; load forecasting ; Load modeling ; Mathematical models ; Meteorology ; Multivariate analysis ; multivariate linear regression (MvLR) ; Neural networks ; Power consumption ; Predictive models ; regression ; Regression analysis ; week ahead</subject><ispartof>IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5603-5612</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</citedby><cites>FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</cites><orcidid>0000-0001-9370-6843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9140425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9140425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Selvi, M. Vetri</creatorcontrib><creatorcontrib>Mishra, Sukumar</creatorcontrib><title>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.</description><subject>Architecture</subject><subject>Artificial neural network (ANN)</subject><subject>Biological system modeling</subject><subject>day-ahead forecasting</subject><subject>Delhi</subject><subject>Economic forecasting</subject><subject>electric load power forecasting (ELPF)</subject><subject>Electric power distribution</subject><subject>feed-forward neural network (FFNN)</subject><subject>Forecasting</subject><subject>Lead time</subject><subject>Linear regression</subject><subject>load forecasting</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Multivariate analysis</subject><subject>multivariate linear regression (MvLR)</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Predictive models</subject><subject>regression</subject><subject>Regression analysis</subject><subject>week ahead</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UUtr20AQFqWFuknvhV4WepazL0veowlxYnAeFJcexUQ7sjeVd93ZVUzz__q_ssIhp2Fmvhd8RfFN8KkQ3FxsVoup5JJPFedGCfWhmAijTGlUVX8sJuOxNMboz8WXGJ84F3om9KT4v_LPGJPbQnLBs9CxB6Qu0B58i-N61WObyLVsHcCyh3BEYstA2EJm-S1znt0OfXKHHtnG7ZHdBHIvwUf226Udu8MjW1C7cynLDITsJ0LvXtC-E5-BHCRka-cRKP-3hDGOYcBbtkS0ZfY7AtksNhD0eaRjoD9sg-3Ou78DxvPiUwd9xK9v86z4tbzaXN6U6_vr1eViXbbSiFR2jwaq2tZcPLaoZqJGY3mtlJWmmmujQXe6niluhBaIlbEoYW6lAIVzC8DVWfHjpHugMPqm5ikM5LNlI7XWlagrKTOKn1AthRgJu-ZAbg_0rxG8GctqclnNWFbzVlamfD9RHCK-w3MOruVMvQJUjpQP</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Selvi, M. Vetri</creator><creator>Mishra, Sukumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9370-6843</orcidid></search><sort><creationdate>202009</creationdate><title>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</title><author>Selvi, M. Vetri ; Mishra, Sukumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Artificial neural network (ANN)</topic><topic>Biological system modeling</topic><topic>day-ahead forecasting</topic><topic>Delhi</topic><topic>Economic forecasting</topic><topic>electric load power forecasting (ELPF)</topic><topic>Electric power distribution</topic><topic>feed-forward neural network (FFNN)</topic><topic>Forecasting</topic><topic>Lead time</topic><topic>Linear regression</topic><topic>load forecasting</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Multivariate analysis</topic><topic>multivariate linear regression (MvLR)</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Predictive models</topic><topic>regression</topic><topic>Regression analysis</topic><topic>week ahead</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvi, M. Vetri</creatorcontrib><creatorcontrib>Mishra, Sukumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selvi, M. Vetri</au><au>Mishra, Sukumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-09</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>5603</spage><epage>5612</epage><pages>5603-5612</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.3009313</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9370-6843</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5603-5612
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2020_3009313
source IEEE Electronic Library (IEL)
subjects Architecture
Artificial neural network (ANN)
Biological system modeling
day-ahead forecasting
Delhi
Economic forecasting
electric load power forecasting (ELPF)
Electric power distribution
feed-forward neural network (FFNN)
Forecasting
Lead time
Linear regression
load forecasting
Load modeling
Mathematical models
Meteorology
Multivariate analysis
multivariate linear regression (MvLR)
Neural networks
Power consumption
Predictive models
regression
Regression analysis
week ahead
title Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Performance%20of%20Electric%20Load%20Power%20Forecasting%20in%20Multiple%20Time%20Horizons%20With%20New%20Architecture%20Realized%20in%20Multivariate%20Linear%20Regression%20and%20Feed-Forward%20Neural%20Network%20Techniques&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Selvi,%20M.%20Vetri&rft.date=2020-09&rft.volume=56&rft.issue=5&rft.spage=5603&rft.epage=5612&rft.pages=5603-5612&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.3009313&rft_dat=%3Cproquest_RIE%3E2444617622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444617622&rft_id=info:pmid/&rft_ieee_id=9140425&rfr_iscdi=true