Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques
A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literatu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5603-5612 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5612 |
---|---|
container_issue | 5 |
container_start_page | 5603 |
container_title | IEEE transactions on industry applications |
container_volume | 56 |
creator | Selvi, M. Vetri Mishra, Sukumar |
description | A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only. |
doi_str_mv | 10.1109/TIA.2020.3009313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2020_3009313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9140425</ieee_id><sourcerecordid>2444617622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</originalsourceid><addsrcrecordid>eNo9UUtr20AQFqWFuknvhV4WepazL0veowlxYnAeFJcexUQ7sjeVd93ZVUzz__q_ssIhp2Fmvhd8RfFN8KkQ3FxsVoup5JJPFedGCfWhmAijTGlUVX8sJuOxNMboz8WXGJ84F3om9KT4v_LPGJPbQnLBs9CxB6Qu0B58i-N61WObyLVsHcCyh3BEYstA2EJm-S1znt0OfXKHHtnG7ZHdBHIvwUf226Udu8MjW1C7cynLDITsJ0LvXtC-E5-BHCRka-cRKP-3hDGOYcBbtkS0ZfY7AtksNhD0eaRjoD9sg-3Ou78DxvPiUwd9xK9v86z4tbzaXN6U6_vr1eViXbbSiFR2jwaq2tZcPLaoZqJGY3mtlJWmmmujQXe6niluhBaIlbEoYW6lAIVzC8DVWfHjpHugMPqm5ikM5LNlI7XWlagrKTOKn1AthRgJu-ZAbg_0rxG8GctqclnNWFbzVlamfD9RHCK-w3MOruVMvQJUjpQP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444617622</pqid></control><display><type>article</type><title>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Selvi, M. Vetri ; Mishra, Sukumar</creator><creatorcontrib>Selvi, M. Vetri ; Mishra, Sukumar</creatorcontrib><description>A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2020.3009313</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Architecture ; Artificial neural network (ANN) ; Biological system modeling ; day-ahead forecasting ; Delhi ; Economic forecasting ; electric load power forecasting (ELPF) ; Electric power distribution ; feed-forward neural network (FFNN) ; Forecasting ; Lead time ; Linear regression ; load forecasting ; Load modeling ; Mathematical models ; Meteorology ; Multivariate analysis ; multivariate linear regression (MvLR) ; Neural networks ; Power consumption ; Predictive models ; regression ; Regression analysis ; week ahead</subject><ispartof>IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5603-5612</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</citedby><cites>FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</cites><orcidid>0000-0001-9370-6843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9140425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9140425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Selvi, M. Vetri</creatorcontrib><creatorcontrib>Mishra, Sukumar</creatorcontrib><title>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.</description><subject>Architecture</subject><subject>Artificial neural network (ANN)</subject><subject>Biological system modeling</subject><subject>day-ahead forecasting</subject><subject>Delhi</subject><subject>Economic forecasting</subject><subject>electric load power forecasting (ELPF)</subject><subject>Electric power distribution</subject><subject>feed-forward neural network (FFNN)</subject><subject>Forecasting</subject><subject>Lead time</subject><subject>Linear regression</subject><subject>load forecasting</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Multivariate analysis</subject><subject>multivariate linear regression (MvLR)</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Predictive models</subject><subject>regression</subject><subject>Regression analysis</subject><subject>week ahead</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UUtr20AQFqWFuknvhV4WepazL0veowlxYnAeFJcexUQ7sjeVd93ZVUzz__q_ssIhp2Fmvhd8RfFN8KkQ3FxsVoup5JJPFedGCfWhmAijTGlUVX8sJuOxNMboz8WXGJ84F3om9KT4v_LPGJPbQnLBs9CxB6Qu0B58i-N61WObyLVsHcCyh3BEYstA2EJm-S1znt0OfXKHHtnG7ZHdBHIvwUf226Udu8MjW1C7cynLDITsJ0LvXtC-E5-BHCRka-cRKP-3hDGOYcBbtkS0ZfY7AtksNhD0eaRjoD9sg-3Ou78DxvPiUwd9xK9v86z4tbzaXN6U6_vr1eViXbbSiFR2jwaq2tZcPLaoZqJGY3mtlJWmmmujQXe6niluhBaIlbEoYW6lAIVzC8DVWfHjpHugMPqm5ikM5LNlI7XWlagrKTOKn1AthRgJu-ZAbg_0rxG8GctqclnNWFbzVlamfD9RHCK-w3MOruVMvQJUjpQP</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Selvi, M. Vetri</creator><creator>Mishra, Sukumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9370-6843</orcidid></search><sort><creationdate>202009</creationdate><title>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</title><author>Selvi, M. Vetri ; Mishra, Sukumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fb9a67d701bce3517e9d0733d2968494a4f475309141ee69de2a8d21a3e8daa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Artificial neural network (ANN)</topic><topic>Biological system modeling</topic><topic>day-ahead forecasting</topic><topic>Delhi</topic><topic>Economic forecasting</topic><topic>electric load power forecasting (ELPF)</topic><topic>Electric power distribution</topic><topic>feed-forward neural network (FFNN)</topic><topic>Forecasting</topic><topic>Lead time</topic><topic>Linear regression</topic><topic>load forecasting</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Multivariate analysis</topic><topic>multivariate linear regression (MvLR)</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Predictive models</topic><topic>regression</topic><topic>Regression analysis</topic><topic>week ahead</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvi, M. Vetri</creatorcontrib><creatorcontrib>Mishra, Sukumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selvi, M. Vetri</au><au>Mishra, Sukumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2020-09</date><risdate>2020</risdate><volume>56</volume><issue>5</issue><spage>5603</spage><epage>5612</epage><pages>5603-5612</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>A new multiple parallel input and parallel output architecture-based models are developed for forecasting electric load power consumption. Attention was paid toward the improvement of the accuracy of forecasting using this new architecture built-in by us, as compared to others in the latest literature. The models have an ability to forecast daily load profiles with a lead time of one to seven days. Both multivariate linear regression and feed-forward neural network techniques have been chosen for comparative performance study and analysis. The real-time data used for this research work were collected from Tata Power Delhi Distribution Limited, Delhi, India. Based on the performance criteria provided in the literature, each model is analyzed and the results are presented for two different lead times, i.e., day-ahead and week-ahead only.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2020.3009313</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9370-6843</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2020-09, Vol.56 (5), p.5603-5612 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2020_3009313 |
source | IEEE Electronic Library (IEL) |
subjects | Architecture Artificial neural network (ANN) Biological system modeling day-ahead forecasting Delhi Economic forecasting electric load power forecasting (ELPF) Electric power distribution feed-forward neural network (FFNN) Forecasting Lead time Linear regression load forecasting Load modeling Mathematical models Meteorology Multivariate analysis multivariate linear regression (MvLR) Neural networks Power consumption Predictive models regression Regression analysis week ahead |
title | Investigation of Performance of Electric Load Power Forecasting in Multiple Time Horizons With New Architecture Realized in Multivariate Linear Regression and Feed-Forward Neural Network Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Performance%20of%20Electric%20Load%20Power%20Forecasting%20in%20Multiple%20Time%20Horizons%20With%20New%20Architecture%20Realized%20in%20Multivariate%20Linear%20Regression%20and%20Feed-Forward%20Neural%20Network%20Techniques&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Selvi,%20M.%20Vetri&rft.date=2020-09&rft.volume=56&rft.issue=5&rft.spage=5603&rft.epage=5612&rft.pages=5603-5612&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2020.3009313&rft_dat=%3Cproquest_RIE%3E2444617622%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444617622&rft_id=info:pmid/&rft_ieee_id=9140425&rfr_iscdi=true |