Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries

This paper presents the supercapacitors (SC) behavior characterization using the temperature combined to the frequency of the dc-current ripples called here electro-thermal stress. To characterize the evolution of the resistance and the capacitance of the SC, the authors have evaluated the impact of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2019-03, Vol.55 (2), p.1817-1827
Hauptverfasser: Bellache, Kosseila, Camara, Mamadou Bailo, Dakyo, Brayima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 2
container_start_page 1817
container_title IEEE transactions on industry applications
container_volume 55
creator Bellache, Kosseila
Camara, Mamadou Bailo
Dakyo, Brayima
description This paper presents the supercapacitors (SC) behavior characterization using the temperature combined to the frequency of the dc-current ripples called here electro-thermal stress. To characterize the evolution of the resistance and the capacitance of the SC, the authors have evaluated the impact of the state of charge (SoC), the number of cycles, the temperature, and the temperature combined to the frequency of the dc-current ripples. This approach enables to show the variations of the SCs resistance and capacitance according to the real constraints imposed by application. The main contribution of this paper is focused on the SCs aging characterization and modeling, using the electro-thermal stress. The experimental tests of the SC characterization and modeling are based on the charge/discharge operations, using the fluctuating and no-fluctuating dc-current waveforms. The proposed model takes into account the variations of the resistance and capacitance of the SC according to the temperature, the frequency of dc-current ripples and the SoC. The terminal voltage of the SC obtained from the proposed model is close to the experimental result, with an error about 1%. So, the proposed model is satisfactory to predict the SCs behavior during the charge/discharge operations using a fluctuating dc-current combined to a variable temperature and SoC.
doi_str_mv 10.1109/TIA.2018.2879304
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2018_2879304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8520777</ieee_id><sourcerecordid>2191266685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-802d3ee1ad51d376593be9ace2ce02e0b25b697f837f625dfc69e51cf36611f93</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKd3wUvBk4fOvKRJm-Mc0w0mHradQ5a-uo6uqUkn6F9vS4eX9-Dx_X48PkLugU4AqHreLKcTRiGbsCxVnCYXZASKq1hxmV6SEaWKx0qp5JrchHCgFBIByYgU61OD3prG2LJ1PkSzvfHGtujLX9OWro5MnUfvLseqrD-jbejnzB13ZY15NK_Qtt7Fmz36o6midesxhGjaNN4Zu49eTNs3YbglV4WpAt6d95hsX-eb2SJefbwtZ9NVbDkTbZxRlnNEMLmAnKdSKL5DZSwyi5Qh3TGxkyotMp4Wkom8sFKhAFtwKQEKxcfkaejdm0o3vjwa_6OdKfViutL9jbLOAXD-DR37OLDds18nDK0-uJOvu_c0AwVMSpmJjqIDZb0LwWPxXwtU9-Z1Z1735vXZfBd5GCIlIv7jmWA0TVP-B2Ckf4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191266685</pqid></control><display><type>article</type><title>Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries</title><source>IEEE Electronic Library (IEL)</source><creator>Bellache, Kosseila ; Camara, Mamadou Bailo ; Dakyo, Brayima</creator><creatorcontrib>Bellache, Kosseila ; Camara, Mamadou Bailo ; Dakyo, Brayima</creatorcontrib><description>This paper presents the supercapacitors (SC) behavior characterization using the temperature combined to the frequency of the dc-current ripples called here electro-thermal stress. To characterize the evolution of the resistance and the capacitance of the SC, the authors have evaluated the impact of the state of charge (SoC), the number of cycles, the temperature, and the temperature combined to the frequency of the dc-current ripples. This approach enables to show the variations of the SCs resistance and capacitance according to the real constraints imposed by application. The main contribution of this paper is focused on the SCs aging characterization and modeling, using the electro-thermal stress. The experimental tests of the SC characterization and modeling are based on the charge/discharge operations, using the fluctuating and no-fluctuating dc-current waveforms. The proposed model takes into account the variations of the resistance and capacitance of the SC according to the temperature, the frequency of dc-current ripples and the SoC. The terminal voltage of the SC obtained from the proposed model is close to the experimental result, with an error about 1%. So, the proposed model is satisfactory to predict the SCs behavior during the charge/discharge operations using a fluctuating dc-current combined to a variable temperature and SoC.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2879304</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Capacitance ; Capacitance variation ; Current measurement ; Direct current ; Discharge ; Electric power ; electro-thermal stress ; Engineering Sciences ; frequency of the dc-current ripples ; impact of the number of cycles ; Modelling ; Resistance ; resistance variation ; Ripples ; SC modeling ; State of charge ; state of charge (SoC) ; supercapacitor (SC) characterization ; Supercapacitors ; temperature impact ; Temperature measurement ; Thermal stress ; Variation ; Voltage measurement ; Waveforms ; Wind turbines</subject><ispartof>IEEE transactions on industry applications, 2019-03, Vol.55 (2), p.1817-1827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-802d3ee1ad51d376593be9ace2ce02e0b25b697f837f625dfc69e51cf36611f93</citedby><cites>FETCH-LOGICAL-c325t-802d3ee1ad51d376593be9ace2ce02e0b25b697f837f625dfc69e51cf36611f93</cites><orcidid>0000-0002-3383-1404 ; 0000-0002-4807-0150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8520777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8520777$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02994133$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellache, Kosseila</creatorcontrib><creatorcontrib>Camara, Mamadou Bailo</creatorcontrib><creatorcontrib>Dakyo, Brayima</creatorcontrib><title>Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper presents the supercapacitors (SC) behavior characterization using the temperature combined to the frequency of the dc-current ripples called here electro-thermal stress. To characterize the evolution of the resistance and the capacitance of the SC, the authors have evaluated the impact of the state of charge (SoC), the number of cycles, the temperature, and the temperature combined to the frequency of the dc-current ripples. This approach enables to show the variations of the SCs resistance and capacitance according to the real constraints imposed by application. The main contribution of this paper is focused on the SCs aging characterization and modeling, using the electro-thermal stress. The experimental tests of the SC characterization and modeling are based on the charge/discharge operations, using the fluctuating and no-fluctuating dc-current waveforms. The proposed model takes into account the variations of the resistance and capacitance of the SC according to the temperature, the frequency of dc-current ripples and the SoC. The terminal voltage of the SC obtained from the proposed model is close to the experimental result, with an error about 1%. So, the proposed model is satisfactory to predict the SCs behavior during the charge/discharge operations using a fluctuating dc-current combined to a variable temperature and SoC.</description><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitance variation</subject><subject>Current measurement</subject><subject>Direct current</subject><subject>Discharge</subject><subject>Electric power</subject><subject>electro-thermal stress</subject><subject>Engineering Sciences</subject><subject>frequency of the dc-current ripples</subject><subject>impact of the number of cycles</subject><subject>Modelling</subject><subject>Resistance</subject><subject>resistance variation</subject><subject>Ripples</subject><subject>SC modeling</subject><subject>State of charge</subject><subject>state of charge (SoC)</subject><subject>supercapacitor (SC) characterization</subject><subject>Supercapacitors</subject><subject>temperature impact</subject><subject>Temperature measurement</subject><subject>Thermal stress</subject><subject>Variation</subject><subject>Voltage measurement</subject><subject>Waveforms</subject><subject>Wind turbines</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUh4MoOKd3wUvBk4fOvKRJm-Mc0w0mHradQ5a-uo6uqUkn6F9vS4eX9-Dx_X48PkLugU4AqHreLKcTRiGbsCxVnCYXZASKq1hxmV6SEaWKx0qp5JrchHCgFBIByYgU61OD3prG2LJ1PkSzvfHGtujLX9OWro5MnUfvLseqrD-jbejnzB13ZY15NK_Qtt7Fmz36o6midesxhGjaNN4Zu49eTNs3YbglV4WpAt6d95hsX-eb2SJefbwtZ9NVbDkTbZxRlnNEMLmAnKdSKL5DZSwyi5Qh3TGxkyotMp4Wkom8sFKhAFtwKQEKxcfkaejdm0o3vjwa_6OdKfViutL9jbLOAXD-DR37OLDds18nDK0-uJOvu_c0AwVMSpmJjqIDZb0LwWPxXwtU9-Z1Z1735vXZfBd5GCIlIv7jmWA0TVP-B2Ckf4Y</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Bellache, Kosseila</creator><creator>Camara, Mamadou Bailo</creator><creator>Dakyo, Brayima</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3383-1404</orcidid><orcidid>https://orcid.org/0000-0002-4807-0150</orcidid></search><sort><creationdate>20190301</creationdate><title>Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries</title><author>Bellache, Kosseila ; Camara, Mamadou Bailo ; Dakyo, Brayima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-802d3ee1ad51d376593be9ace2ce02e0b25b697f837f625dfc69e51cf36611f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitance variation</topic><topic>Current measurement</topic><topic>Direct current</topic><topic>Discharge</topic><topic>Electric power</topic><topic>electro-thermal stress</topic><topic>Engineering Sciences</topic><topic>frequency of the dc-current ripples</topic><topic>impact of the number of cycles</topic><topic>Modelling</topic><topic>Resistance</topic><topic>resistance variation</topic><topic>Ripples</topic><topic>SC modeling</topic><topic>State of charge</topic><topic>state of charge (SoC)</topic><topic>supercapacitor (SC) characterization</topic><topic>Supercapacitors</topic><topic>temperature impact</topic><topic>Temperature measurement</topic><topic>Thermal stress</topic><topic>Variation</topic><topic>Voltage measurement</topic><topic>Waveforms</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellache, Kosseila</creatorcontrib><creatorcontrib>Camara, Mamadou Bailo</creatorcontrib><creatorcontrib>Dakyo, Brayima</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bellache, Kosseila</au><au>Camara, Mamadou Bailo</au><au>Dakyo, Brayima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>1817</spage><epage>1827</epage><pages>1817-1827</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper presents the supercapacitors (SC) behavior characterization using the temperature combined to the frequency of the dc-current ripples called here electro-thermal stress. To characterize the evolution of the resistance and the capacitance of the SC, the authors have evaluated the impact of the state of charge (SoC), the number of cycles, the temperature, and the temperature combined to the frequency of the dc-current ripples. This approach enables to show the variations of the SCs resistance and capacitance according to the real constraints imposed by application. The main contribution of this paper is focused on the SCs aging characterization and modeling, using the electro-thermal stress. The experimental tests of the SC characterization and modeling are based on the charge/discharge operations, using the fluctuating and no-fluctuating dc-current waveforms. The proposed model takes into account the variations of the resistance and capacitance of the SC according to the temperature, the frequency of dc-current ripples and the SoC. The terminal voltage of the SC obtained from the proposed model is close to the experimental result, with an error about 1%. So, the proposed model is satisfactory to predict the SCs behavior during the charge/discharge operations using a fluctuating dc-current combined to a variable temperature and SoC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2879304</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3383-1404</orcidid><orcidid>https://orcid.org/0000-0002-4807-0150</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2019-03, Vol.55 (2), p.1817-1827
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2018_2879304
source IEEE Electronic Library (IEL)
subjects Batteries
Capacitance
Capacitance variation
Current measurement
Direct current
Discharge
Electric power
electro-thermal stress
Engineering Sciences
frequency of the dc-current ripples
impact of the number of cycles
Modelling
Resistance
resistance variation
Ripples
SC modeling
State of charge
state of charge (SoC)
supercapacitor (SC) characterization
Supercapacitors
temperature impact
Temperature measurement
Thermal stress
Variation
Voltage measurement
Waveforms
Wind turbines
title Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercapacitors%20Characterization%20and%20Modeling%20Using%20Combined%20Electro-Thermal%20Stress%20Approach%20Batteries&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Bellache,%20Kosseila&rft.date=2019-03-01&rft.volume=55&rft.issue=2&rft.spage=1817&rft.epage=1827&rft.pages=1817-1827&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2879304&rft_dat=%3Cproquest_RIE%3E2191266685%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191266685&rft_id=info:pmid/&rft_ieee_id=8520777&rfr_iscdi=true