Online Partial Discharge Insulation Condition Monitoring of Complete High-Voltage Networks
Renforth et al. in 2017 present a novel online partial discharge (OLPD) high-voltage (HV) insulation condition monitoring (CM) solution to monitor complete HV networks in petrochemical and other critical industry facilities. Continuous, 24/7 OLPD insulation monitoring of in-service cables, switchgea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2019-01, Vol.55 (1), p.1021-1029 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1029 |
---|---|
container_issue | 1 |
container_start_page | 1021 |
container_title | IEEE transactions on industry applications |
container_volume | 55 |
creator | Renforth, Lee Andrew Giussani, Riccardo Mendiola, Michael T. Dodd, Lewis |
description | Renforth et al. in 2017 present a novel online partial discharge (OLPD) high-voltage (HV) insulation condition monitoring (CM) solution to monitor complete HV networks in petrochemical and other critical industry facilities. Continuous, 24/7 OLPD insulation monitoring of in-service cables, switchgear, transformers, and rotating machines operating at 3000 V and above provides operators with an early warning against incipient HV insulation faults that manifest themselves through high PD activity. Knowledge of the type, severity, and source of any site(s) of PD across the HV network (including remotely connected plant such as Ex/ATEX HV motors located in hazardous gas zones) enables pinpointed preventative maintenance interventions to be made to the HV insulation system during planned maintenance turnarounds to avoid unplanned outages. To monitor a complete HV network, OLPD sensors and monitoring nodes are distributed at strategic locations across the network. The CM data from the distributed nodes are passed via Ethernet/LAN to a partial discharge monitoring server (PDMS) located at the control center of the facility with a secure internet connection. The PDMS operates an advanced OLPD monitoring database for the logging, display, benchmarking, trending, and visualization of the PD monitoring data on a graphical user interface. The insulation condition criticality (from 0% to 100%) of each phase of all of the individual HV plant items monitored is presented on a series of mimic screens of the HV network single-line diagram. This paper concludes with a case study of a complete HV network OLPD monitoring design solution implemented at a large, crude-oil processing facility in Eurasia. |
doi_str_mv | 10.1109/TIA.2018.2866983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2018_2866983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8444723</ieee_id><sourcerecordid>2158918286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-89ccafa52dc061c1368f4579da6cd3be520edea75f32d77d1455d219fe7c188b3</originalsourceid><addsrcrecordid>eNo9kEtPQjEQRhujiYjuTdzcxPXFPu6jXRJ8QILiAl24aUofULy02JYY_71FiKuZTL4zMzkAXCM4QAiyu_lkOMAQ0QGmTcMoOQE9xAgrGWnaU9CDkJGSMVadg4sY1xCiqkZVD3zMXGedLl5FSFZ0xb2NciXCUhcTF3edSNa7YuSdsn_ds3c2-WDdsvAmzzfbTiddjO1yVb77LokMvuj07cNnvARnRnRRXx1rH7w9PsxH43I6e5qMhtNSYoZSSZmUwogaKwkbJBFpqKnqlinRSEUWusZQKy3a2hCs2lblx2uFETO6lYjSBemD28PebfBfOx0TX_tdcPkkx6imDNGsJKfgISWDjzFow7fBbkT44QjyvUGeDfK9QX40mJGbA2K11v9xWlVViwn5BfmxbX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2158918286</pqid></control><display><type>article</type><title>Online Partial Discharge Insulation Condition Monitoring of Complete High-Voltage Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Renforth, Lee Andrew ; Giussani, Riccardo ; Mendiola, Michael T. ; Dodd, Lewis</creator><creatorcontrib>Renforth, Lee Andrew ; Giussani, Riccardo ; Mendiola, Michael T. ; Dodd, Lewis</creatorcontrib><description>Renforth et al. in 2017 present a novel online partial discharge (OLPD) high-voltage (HV) insulation condition monitoring (CM) solution to monitor complete HV networks in petrochemical and other critical industry facilities. Continuous, 24/7 OLPD insulation monitoring of in-service cables, switchgear, transformers, and rotating machines operating at 3000 V and above provides operators with an early warning against incipient HV insulation faults that manifest themselves through high PD activity. Knowledge of the type, severity, and source of any site(s) of PD across the HV network (including remotely connected plant such as Ex/ATEX HV motors located in hazardous gas zones) enables pinpointed preventative maintenance interventions to be made to the HV insulation system during planned maintenance turnarounds to avoid unplanned outages. To monitor a complete HV network, OLPD sensors and monitoring nodes are distributed at strategic locations across the network. The CM data from the distributed nodes are passed via Ethernet/LAN to a partial discharge monitoring server (PDMS) located at the control center of the facility with a secure internet connection. The PDMS operates an advanced OLPD monitoring database for the logging, display, benchmarking, trending, and visualization of the PD monitoring data on a graphical user interface. The insulation condition criticality (from 0% to 100%) of each phase of all of the individual HV plant items monitored is presented on a series of mimic screens of the HV network single-line diagram. This paper concludes with a case study of a complete HV network OLPD monitoring design solution implemented at a large, crude-oil processing facility in Eurasia.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2866983</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>ATmosphere EXplosibles (ATEX) high-voltage (HV) motor ; Cables ; Condition monitoring ; Crude oil ; Discharge ; Electric potential ; Ethernet ; Ex HV motor ; Graphical user interface ; High voltages ; HV network condition monitoring ; Insulation ; Local area networks ; Monitoring ; Nodes ; online partial discharge (OLPD) ; partial discharge (PD) ; Partial discharges ; Polydimethylsiloxane ; Power transformer insulation ; Preventive maintenance ; Rotating machinery ; Rotating machines ; Screens ; Sensors ; Silicone resins ; Switchgear ; Switching theory ; Synchronous motors</subject><ispartof>IEEE transactions on industry applications, 2019-01, Vol.55 (1), p.1021-1029</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-89ccafa52dc061c1368f4579da6cd3be520edea75f32d77d1455d219fe7c188b3</citedby><cites>FETCH-LOGICAL-c291t-89ccafa52dc061c1368f4579da6cd3be520edea75f32d77d1455d219fe7c188b3</cites><orcidid>0000-0001-9731-9584 ; 0000-0001-8057-4220 ; 0000-0002-8621-0644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8444723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8444723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Renforth, Lee Andrew</creatorcontrib><creatorcontrib>Giussani, Riccardo</creatorcontrib><creatorcontrib>Mendiola, Michael T.</creatorcontrib><creatorcontrib>Dodd, Lewis</creatorcontrib><title>Online Partial Discharge Insulation Condition Monitoring of Complete High-Voltage Networks</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Renforth et al. in 2017 present a novel online partial discharge (OLPD) high-voltage (HV) insulation condition monitoring (CM) solution to monitor complete HV networks in petrochemical and other critical industry facilities. Continuous, 24/7 OLPD insulation monitoring of in-service cables, switchgear, transformers, and rotating machines operating at 3000 V and above provides operators with an early warning against incipient HV insulation faults that manifest themselves through high PD activity. Knowledge of the type, severity, and source of any site(s) of PD across the HV network (including remotely connected plant such as Ex/ATEX HV motors located in hazardous gas zones) enables pinpointed preventative maintenance interventions to be made to the HV insulation system during planned maintenance turnarounds to avoid unplanned outages. To monitor a complete HV network, OLPD sensors and monitoring nodes are distributed at strategic locations across the network. The CM data from the distributed nodes are passed via Ethernet/LAN to a partial discharge monitoring server (PDMS) located at the control center of the facility with a secure internet connection. The PDMS operates an advanced OLPD monitoring database for the logging, display, benchmarking, trending, and visualization of the PD monitoring data on a graphical user interface. The insulation condition criticality (from 0% to 100%) of each phase of all of the individual HV plant items monitored is presented on a series of mimic screens of the HV network single-line diagram. This paper concludes with a case study of a complete HV network OLPD monitoring design solution implemented at a large, crude-oil processing facility in Eurasia.</description><subject>ATmosphere EXplosibles (ATEX) high-voltage (HV) motor</subject><subject>Cables</subject><subject>Condition monitoring</subject><subject>Crude oil</subject><subject>Discharge</subject><subject>Electric potential</subject><subject>Ethernet</subject><subject>Ex HV motor</subject><subject>Graphical user interface</subject><subject>High voltages</subject><subject>HV network condition monitoring</subject><subject>Insulation</subject><subject>Local area networks</subject><subject>Monitoring</subject><subject>Nodes</subject><subject>online partial discharge (OLPD)</subject><subject>partial discharge (PD)</subject><subject>Partial discharges</subject><subject>Polydimethylsiloxane</subject><subject>Power transformer insulation</subject><subject>Preventive maintenance</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Screens</subject><subject>Sensors</subject><subject>Silicone resins</subject><subject>Switchgear</subject><subject>Switching theory</subject><subject>Synchronous motors</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPQjEQRhujiYjuTdzcxPXFPu6jXRJ8QILiAl24aUofULy02JYY_71FiKuZTL4zMzkAXCM4QAiyu_lkOMAQ0QGmTcMoOQE9xAgrGWnaU9CDkJGSMVadg4sY1xCiqkZVD3zMXGedLl5FSFZ0xb2NciXCUhcTF3edSNa7YuSdsn_ds3c2-WDdsvAmzzfbTiddjO1yVb77LokMvuj07cNnvARnRnRRXx1rH7w9PsxH43I6e5qMhtNSYoZSSZmUwogaKwkbJBFpqKnqlinRSEUWusZQKy3a2hCs2lblx2uFETO6lYjSBemD28PebfBfOx0TX_tdcPkkx6imDNGsJKfgISWDjzFow7fBbkT44QjyvUGeDfK9QX40mJGbA2K11v9xWlVViwn5BfmxbX8</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Renforth, Lee Andrew</creator><creator>Giussani, Riccardo</creator><creator>Mendiola, Michael T.</creator><creator>Dodd, Lewis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9731-9584</orcidid><orcidid>https://orcid.org/0000-0001-8057-4220</orcidid><orcidid>https://orcid.org/0000-0002-8621-0644</orcidid></search><sort><creationdate>201901</creationdate><title>Online Partial Discharge Insulation Condition Monitoring of Complete High-Voltage Networks</title><author>Renforth, Lee Andrew ; Giussani, Riccardo ; Mendiola, Michael T. ; Dodd, Lewis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-89ccafa52dc061c1368f4579da6cd3be520edea75f32d77d1455d219fe7c188b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ATmosphere EXplosibles (ATEX) high-voltage (HV) motor</topic><topic>Cables</topic><topic>Condition monitoring</topic><topic>Crude oil</topic><topic>Discharge</topic><topic>Electric potential</topic><topic>Ethernet</topic><topic>Ex HV motor</topic><topic>Graphical user interface</topic><topic>High voltages</topic><topic>HV network condition monitoring</topic><topic>Insulation</topic><topic>Local area networks</topic><topic>Monitoring</topic><topic>Nodes</topic><topic>online partial discharge (OLPD)</topic><topic>partial discharge (PD)</topic><topic>Partial discharges</topic><topic>Polydimethylsiloxane</topic><topic>Power transformer insulation</topic><topic>Preventive maintenance</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Screens</topic><topic>Sensors</topic><topic>Silicone resins</topic><topic>Switchgear</topic><topic>Switching theory</topic><topic>Synchronous motors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renforth, Lee Andrew</creatorcontrib><creatorcontrib>Giussani, Riccardo</creatorcontrib><creatorcontrib>Mendiola, Michael T.</creatorcontrib><creatorcontrib>Dodd, Lewis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Renforth, Lee Andrew</au><au>Giussani, Riccardo</au><au>Mendiola, Michael T.</au><au>Dodd, Lewis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Partial Discharge Insulation Condition Monitoring of Complete High-Voltage Networks</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2019-01</date><risdate>2019</risdate><volume>55</volume><issue>1</issue><spage>1021</spage><epage>1029</epage><pages>1021-1029</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Renforth et al. in 2017 present a novel online partial discharge (OLPD) high-voltage (HV) insulation condition monitoring (CM) solution to monitor complete HV networks in petrochemical and other critical industry facilities. Continuous, 24/7 OLPD insulation monitoring of in-service cables, switchgear, transformers, and rotating machines operating at 3000 V and above provides operators with an early warning against incipient HV insulation faults that manifest themselves through high PD activity. Knowledge of the type, severity, and source of any site(s) of PD across the HV network (including remotely connected plant such as Ex/ATEX HV motors located in hazardous gas zones) enables pinpointed preventative maintenance interventions to be made to the HV insulation system during planned maintenance turnarounds to avoid unplanned outages. To monitor a complete HV network, OLPD sensors and monitoring nodes are distributed at strategic locations across the network. The CM data from the distributed nodes are passed via Ethernet/LAN to a partial discharge monitoring server (PDMS) located at the control center of the facility with a secure internet connection. The PDMS operates an advanced OLPD monitoring database for the logging, display, benchmarking, trending, and visualization of the PD monitoring data on a graphical user interface. The insulation condition criticality (from 0% to 100%) of each phase of all of the individual HV plant items monitored is presented on a series of mimic screens of the HV network single-line diagram. This paper concludes with a case study of a complete HV network OLPD monitoring design solution implemented at a large, crude-oil processing facility in Eurasia.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2866983</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9731-9584</orcidid><orcidid>https://orcid.org/0000-0001-8057-4220</orcidid><orcidid>https://orcid.org/0000-0002-8621-0644</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2019-01, Vol.55 (1), p.1021-1029 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2018_2866983 |
source | IEEE Electronic Library (IEL) |
subjects | ATmosphere EXplosibles (ATEX) high-voltage (HV) motor Cables Condition monitoring Crude oil Discharge Electric potential Ethernet Ex HV motor Graphical user interface High voltages HV network condition monitoring Insulation Local area networks Monitoring Nodes online partial discharge (OLPD) partial discharge (PD) Partial discharges Polydimethylsiloxane Power transformer insulation Preventive maintenance Rotating machinery Rotating machines Screens Sensors Silicone resins Switchgear Switching theory Synchronous motors |
title | Online Partial Discharge Insulation Condition Monitoring of Complete High-Voltage Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Partial%20Discharge%20Insulation%20Condition%20Monitoring%20of%20Complete%20High-Voltage%20Networks&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Renforth,%20Lee%20Andrew&rft.date=2019-01&rft.volume=55&rft.issue=1&rft.spage=1021&rft.epage=1029&rft.pages=1021-1029&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2866983&rft_dat=%3Cproquest_RIE%3E2158918286%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2158918286&rft_id=info:pmid/&rft_ieee_id=8444723&rfr_iscdi=true |