Modeling and Optimization of Brushless Doubly-Fed Induction Machines Using Computationally Efficient Finite-Element Analysis

The air-gap magnetic fields of brushless doubly fed induction machines (DFIMs) are complicated because of the cross-coupling between two stator fields via a special nested-loop rotor. Compared with classical analytical models, transient finite-element (FE) modeling is easier to evaluate the machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2016-11, Vol.52 (6), p.4525-4534
Hauptverfasser: Xuezhou Wang, Strous, Tim Dave, Lahaye, Domenico, Polinder, Henk, Ferreira, Jan Abraham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The air-gap magnetic fields of brushless doubly fed induction machines (DFIMs) are complicated because of the cross-coupling between two stator fields via a special nested-loop rotor. Compared with classical analytical models, transient finite-element (FE) modeling is easier to evaluate the machine performance taking saturation into account. However, it is not efficient to evaluate lots of candidates in a large design space using transient FE models considering the time cost. In the transient simulation, the induced rotor currents are calculated by solving several time differential equations using the backward differentiation formula. This paper presents a computationally efficient FE analysis for brushless DFIMs. The induced rotor currents can be calculated using a single magnetostatic FE simulation. The average torque, losses, and efficiency can also be predicted using one magnetostatic solution. One candidate design can be evaluated within 1 or 2 min on a personal workstation. The efficient analysis is validated by the transient FE results. The presented model is applied to the optimization of a prototype. The influence of two construction variables, namely, pole-pair combinations and the number of loops per nest, is studied. One pole-pair combination is selected for manufacturing a prototype.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2016.2593715