A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator

This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2016-07, Vol.52 (4), p.3535-3542
Hauptverfasser: Jahromi, Mohsen Ghaffarpour, Mitchell, Steven D., Mirzaeva, Galina, Gay, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3542
container_issue 4
container_start_page 3535
container_title IEEE transactions on industry applications
container_volume 52
creator Jahromi, Mohsen Ghaffarpour
Mitchell, Steven D.
Mirzaeva, Galina
Gay, David
description This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.
doi_str_mv 10.1109/TIA.2016.2539125
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2016_2539125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7426829</ieee_id><sourcerecordid>1835585410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</originalsourceid><addsrcrecordid>eNpdkE1rAjEQhkNpodb2Xugl0Esva5PNx26OIrYV1BaqxxLiZrZd0Y1NIuK_b0Tx0MsMA887zDwI3VPSo5So59mo38sJlb1cMEVzcYE6VDGVKSaLS9QhRLFMKcWv0U0IS0IoF5R30FcfT2GHJxB_nMW18_jD7cDjz32IsMZjZyyeOAurpv3G83CoBk9dm2YwZ2xkoY1N3VQmNq7FwxCbtYnO36Kr2qwC3J16F81fhrPBWzZ-fx0N-uOsYjmPGUBpGDNyYQtlaisKwrjhRoiCSlkZZQWAqhY5lyCUZHxh6xoMGCOVkJxK1kVPx70b7363EKJeN6GC1cq04LZB05IJUQpOSUIf_6FLt_Vtui5RRFCSTJWJIkeq8i4ED7Xe-PSS32tK9MG3Tr71wbc--U6Rh2OkAYAzXvBclrlif2ite3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805100098</pqid></control><display><type>article</type><title>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</title><source>IEEE Electronic Library (IEL)</source><creator>Jahromi, Mohsen Ghaffarpour ; Mitchell, Steven D. ; Mirzaeva, Galina ; Gay, David</creator><creatorcontrib>Jahromi, Mohsen Ghaffarpour ; Mitchell, Steven D. ; Mirzaeva, Galina ; Gay, David</creatorcontrib><description>This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2016.2539125</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Binary trees ; Computational modeling ; Harmonic analysis ; Load modeling ; Mathematical models ; mining industry ; Modelling ; Networks ; Neural networks ; Nonlinearity ; power quality ; Power system dynamics ; power system harmonics ; power system identification ; power system modeling ; Power system stability ; Rope ; Shovels</subject><ispartof>IEEE transactions on industry applications, 2016-07, Vol.52 (4), p.3535-3542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</citedby><cites>FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7426829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7426829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jahromi, Mohsen Ghaffarpour</creatorcontrib><creatorcontrib>Mitchell, Steven D.</creatorcontrib><creatorcontrib>Mirzaeva, Galina</creatorcontrib><creatorcontrib>Gay, David</creatorcontrib><title>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Binary trees</subject><subject>Computational modeling</subject><subject>Harmonic analysis</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>mining industry</subject><subject>Modelling</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>power quality</subject><subject>Power system dynamics</subject><subject>power system harmonics</subject><subject>power system identification</subject><subject>power system modeling</subject><subject>Power system stability</subject><subject>Rope</subject><subject>Shovels</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rAjEQhkNpodb2Xugl0Esva5PNx26OIrYV1BaqxxLiZrZd0Y1NIuK_b0Tx0MsMA887zDwI3VPSo5So59mo38sJlb1cMEVzcYE6VDGVKSaLS9QhRLFMKcWv0U0IS0IoF5R30FcfT2GHJxB_nMW18_jD7cDjz32IsMZjZyyeOAurpv3G83CoBk9dm2YwZ2xkoY1N3VQmNq7FwxCbtYnO36Kr2qwC3J16F81fhrPBWzZ-fx0N-uOsYjmPGUBpGDNyYQtlaisKwrjhRoiCSlkZZQWAqhY5lyCUZHxh6xoMGCOVkJxK1kVPx70b7363EKJeN6GC1cq04LZB05IJUQpOSUIf_6FLt_Vtui5RRFCSTJWJIkeq8i4ED7Xe-PSS32tK9MG3Tr71wbc--U6Rh2OkAYAzXvBclrlif2ite3I</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Jahromi, Mohsen Ghaffarpour</creator><creator>Mitchell, Steven D.</creator><creator>Mirzaeva, Galina</creator><creator>Gay, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201607</creationdate><title>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</title><author>Jahromi, Mohsen Ghaffarpour ; Mitchell, Steven D. ; Mirzaeva, Galina ; Gay, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Binary trees</topic><topic>Computational modeling</topic><topic>Harmonic analysis</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>mining industry</topic><topic>Modelling</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>power quality</topic><topic>Power system dynamics</topic><topic>power system harmonics</topic><topic>power system identification</topic><topic>power system modeling</topic><topic>Power system stability</topic><topic>Rope</topic><topic>Shovels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahromi, Mohsen Ghaffarpour</creatorcontrib><creatorcontrib>Mitchell, Steven D.</creatorcontrib><creatorcontrib>Mirzaeva, Galina</creatorcontrib><creatorcontrib>Gay, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jahromi, Mohsen Ghaffarpour</au><au>Mitchell, Steven D.</au><au>Mirzaeva, Galina</au><au>Gay, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2016-07</date><risdate>2016</risdate><volume>52</volume><issue>4</issue><spage>3535</spage><epage>3542</epage><pages>3535-3542</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2016.2539125</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2016-07, Vol.52 (4), p.3535-3542
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2016_2539125
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Binary trees
Computational modeling
Harmonic analysis
Load modeling
Mathematical models
mining industry
Modelling
Networks
Neural networks
Nonlinearity
power quality
Power system dynamics
power system harmonics
power system identification
power system modeling
Power system stability
Rope
Shovels
title A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Method%20for%20Power%20System%20Load%20Modeling%20Using%20a%20Nonlinear%20System%20Identification%20Estimator&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Jahromi,%20Mohsen%20Ghaffarpour&rft.date=2016-07&rft.volume=52&rft.issue=4&rft.spage=3535&rft.epage=3542&rft.pages=3535-3542&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2016.2539125&rft_dat=%3Cproquest_RIE%3E1835585410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805100098&rft_id=info:pmid/&rft_ieee_id=7426829&rfr_iscdi=true