A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator
This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs we...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2016-07, Vol.52 (4), p.3535-3542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3542 |
---|---|
container_issue | 4 |
container_start_page | 3535 |
container_title | IEEE transactions on industry applications |
container_volume | 52 |
creator | Jahromi, Mohsen Ghaffarpour Mitchell, Steven D. Mirzaeva, Galina Gay, David |
description | This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement. |
doi_str_mv | 10.1109/TIA.2016.2539125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2016_2539125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7426829</ieee_id><sourcerecordid>1835585410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</originalsourceid><addsrcrecordid>eNpdkE1rAjEQhkNpodb2Xugl0Esva5PNx26OIrYV1BaqxxLiZrZd0Y1NIuK_b0Tx0MsMA887zDwI3VPSo5So59mo38sJlb1cMEVzcYE6VDGVKSaLS9QhRLFMKcWv0U0IS0IoF5R30FcfT2GHJxB_nMW18_jD7cDjz32IsMZjZyyeOAurpv3G83CoBk9dm2YwZ2xkoY1N3VQmNq7FwxCbtYnO36Kr2qwC3J16F81fhrPBWzZ-fx0N-uOsYjmPGUBpGDNyYQtlaisKwrjhRoiCSlkZZQWAqhY5lyCUZHxh6xoMGCOVkJxK1kVPx70b7363EKJeN6GC1cq04LZB05IJUQpOSUIf_6FLt_Vtui5RRFCSTJWJIkeq8i4ED7Xe-PSS32tK9MG3Tr71wbc--U6Rh2OkAYAzXvBclrlif2ite3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805100098</pqid></control><display><type>article</type><title>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</title><source>IEEE Electronic Library (IEL)</source><creator>Jahromi, Mohsen Ghaffarpour ; Mitchell, Steven D. ; Mirzaeva, Galina ; Gay, David</creator><creatorcontrib>Jahromi, Mohsen Ghaffarpour ; Mitchell, Steven D. ; Mirzaeva, Galina ; Gay, David</creatorcontrib><description>This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2016.2539125</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Binary trees ; Computational modeling ; Harmonic analysis ; Load modeling ; Mathematical models ; mining industry ; Modelling ; Networks ; Neural networks ; Nonlinearity ; power quality ; Power system dynamics ; power system harmonics ; power system identification ; power system modeling ; Power system stability ; Rope ; Shovels</subject><ispartof>IEEE transactions on industry applications, 2016-07, Vol.52 (4), p.3535-3542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</citedby><cites>FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7426829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7426829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jahromi, Mohsen Ghaffarpour</creatorcontrib><creatorcontrib>Mitchell, Steven D.</creatorcontrib><creatorcontrib>Mirzaeva, Galina</creatorcontrib><creatorcontrib>Gay, David</creatorcontrib><title>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Binary trees</subject><subject>Computational modeling</subject><subject>Harmonic analysis</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>mining industry</subject><subject>Modelling</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>power quality</subject><subject>Power system dynamics</subject><subject>power system harmonics</subject><subject>power system identification</subject><subject>power system modeling</subject><subject>Power system stability</subject><subject>Rope</subject><subject>Shovels</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rAjEQhkNpodb2Xugl0Esva5PNx26OIrYV1BaqxxLiZrZd0Y1NIuK_b0Tx0MsMA887zDwI3VPSo5So59mo38sJlb1cMEVzcYE6VDGVKSaLS9QhRLFMKcWv0U0IS0IoF5R30FcfT2GHJxB_nMW18_jD7cDjz32IsMZjZyyeOAurpv3G83CoBk9dm2YwZ2xkoY1N3VQmNq7FwxCbtYnO36Kr2qwC3J16F81fhrPBWzZ-fx0N-uOsYjmPGUBpGDNyYQtlaisKwrjhRoiCSlkZZQWAqhY5lyCUZHxh6xoMGCOVkJxK1kVPx70b7363EKJeN6GC1cq04LZB05IJUQpOSUIf_6FLt_Vtui5RRFCSTJWJIkeq8i4ED7Xe-PSS32tK9MG3Tr71wbc--U6Rh2OkAYAzXvBclrlif2ite3I</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Jahromi, Mohsen Ghaffarpour</creator><creator>Mitchell, Steven D.</creator><creator>Mirzaeva, Galina</creator><creator>Gay, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201607</creationdate><title>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</title><author>Jahromi, Mohsen Ghaffarpour ; Mitchell, Steven D. ; Mirzaeva, Galina ; Gay, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-ee8a33a6bd79afd57034a4a557166ca9d5ee9cb246e59634bdffeaeaa69564163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Binary trees</topic><topic>Computational modeling</topic><topic>Harmonic analysis</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>mining industry</topic><topic>Modelling</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>power quality</topic><topic>Power system dynamics</topic><topic>power system harmonics</topic><topic>power system identification</topic><topic>power system modeling</topic><topic>Power system stability</topic><topic>Rope</topic><topic>Shovels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahromi, Mohsen Ghaffarpour</creatorcontrib><creatorcontrib>Mitchell, Steven D.</creatorcontrib><creatorcontrib>Mirzaeva, Galina</creatorcontrib><creatorcontrib>Gay, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jahromi, Mohsen Ghaffarpour</au><au>Mitchell, Steven D.</au><au>Mirzaeva, Galina</au><au>Gay, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2016-07</date><risdate>2016</risdate><volume>52</volume><issue>4</issue><spage>3535</spage><epage>3542</epage><pages>3535-3542</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>This paper proposes a new method for measurement-based modeling of nonlinear loads in power systems. The proposed method includes a combination of a binary tree algorithm with nonlinear autoregressive with exogenous input (NARX) identification. This paper demonstrates that the new method performs well without any prior knowledge of the system structure. In contrast to other load modeling methods, which are typically aimed for particular studies or load types, the proposed method can be used with any load type and for any study. Accurate load modeling is particularly important for studies of industrial networks and grids. In the study described, a field data set was collected at a mine site from a large electrical rope shovel. This data set has been used to develop a model of the rope shovel based on the proposed binary tree-NARX algorithm. When compared to other known methods, such as wavelet and sigmoid networks, the proposed method has shown the fastest training time and the highest accuracy. Finally, the modeling results have been verified against another set of field measurements from an existing network and have shown a very good agreement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2016.2539125</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2016-07, Vol.52 (4), p.3535-3542 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2016_2539125 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Binary trees Computational modeling Harmonic analysis Load modeling Mathematical models mining industry Modelling Networks Neural networks Nonlinearity power quality Power system dynamics power system harmonics power system identification power system modeling Power system stability Rope Shovels |
title | A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Method%20for%20Power%20System%20Load%20Modeling%20Using%20a%20Nonlinear%20System%20Identification%20Estimator&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Jahromi,%20Mohsen%20Ghaffarpour&rft.date=2016-07&rft.volume=52&rft.issue=4&rft.spage=3535&rft.epage=3542&rft.pages=3535-3542&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2016.2539125&rft_dat=%3Cproquest_RIE%3E1835585410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805100098&rft_id=info:pmid/&rft_ieee_id=7426829&rfr_iscdi=true |