A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility

In this paper, a physical model for a SiC Junction Field Effect Transistor (JFET) is presented. The novel feature of the model is that the mobility dependence on both temperature and electric field is taken into account. This is particularly important for high-current power devices where the maximum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2011-01, Vol.47 (1), p.199-211
Hauptverfasser: Platania, E, Zhiyang Chen, Chimento, Filippo, Grekov, Alexander E, Ruiyun Fu, Liqing Lu, Raciti, Angelo, Hudgins, Jerry L, Mantooth, H A, Sheridan, D C, Casady, J, Santi, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 1
container_start_page 199
container_title IEEE transactions on industry applications
container_volume 47
creator Platania, E
Zhiyang Chen
Chimento, Filippo
Grekov, Alexander E
Ruiyun Fu
Liqing Lu
Raciti, Angelo
Hudgins, Jerry L
Mantooth, H A
Sheridan, D C
Casady, J
Santi, Enrico
description In this paper, a physical model for a SiC Junction Field Effect Transistor (JFET) is presented. The novel feature of the model is that the mobility dependence on both temperature and electric field is taken into account. This is particularly important for high-current power devices where the maximum conduction current is limited by drift velocity saturation in the channel. The model equations are described in detail, emphasizing the differences introduced by the field-dependent mobility model. The model is then implemented in Pspice. Both static and dynamic simulation results are given. The results are validated with experimental results under static conditions and under resistive and inductive switching conditions.
doi_str_mv 10.1109/TIA.2010.2090843
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2010_2090843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5620973</ieee_id><sourcerecordid>861539739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c05a12519727a1df337b4c27fdfcd1b85138ebf7155764e0fc4f7d4741928d733</originalsourceid><addsrcrecordid>eNpdkDFPwzAUhC0EEqWwI7FELEwuduzE8VhKC0VFINHOVmI_g6s0KXYy9N_j0oqB6enpvjudDqFrSkaUEnm_nI9HKYlfSiQpODtBAyqZxJLl4hQNCJEMSyn5OboIYU0I5RnlA7QaJ-9fu-B0wA9lAJO8tgbqxLY-KZMPN0leZtNlMta67ZvONZ-_yrQG3Xmn8cxBbfAjbKEx0HTRXLnadbtLdGbLOsDV8Q7RKsZMnvHi7Wk-GS-wZrnssCZZSdOMSpGKkhrLmKi4ToU1VhtaFRllBVRW0CwTOQdiNbfCcMGpTAsjGBuiu0Pu1rffPYRObVzQUNdlA20fVJHTjEnBZCRv_5HrtvdNLKcKnstUCFlEiBwg7dsQPFi19W5T-p2iRO1XVnFltV9ZHVeOlpuDxQHAH57lUY_9fgDY0XXf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>846927798</pqid></control><display><type>article</type><title>A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility</title><source>IEEE Electronic Library (IEL)</source><creator>Platania, E ; Zhiyang Chen ; Chimento, Filippo ; Grekov, Alexander E ; Ruiyun Fu ; Liqing Lu ; Raciti, Angelo ; Hudgins, Jerry L ; Mantooth, H A ; Sheridan, D C ; Casady, J ; Santi, Enrico</creator><creatorcontrib>Platania, E ; Zhiyang Chen ; Chimento, Filippo ; Grekov, Alexander E ; Ruiyun Fu ; Liqing Lu ; Raciti, Angelo ; Hudgins, Jerry L ; Mantooth, H A ; Sheridan, D C ; Casady, J ; Santi, Enrico</creatorcontrib><description>In this paper, a physical model for a SiC Junction Field Effect Transistor (JFET) is presented. The novel feature of the model is that the mobility dependence on both temperature and electric field is taken into account. This is particularly important for high-current power devices where the maximum conduction current is limited by drift velocity saturation in the channel. The model equations are described in detail, emphasizing the differences introduced by the field-dependent mobility model. The model is then implemented in Pspice. Both static and dynamic simulation results are given. The results are validated with experimental results under static conditions and under resistive and inductive switching conditions.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2010.2090843</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accounting ; Channels ; Electric fields ; Electrical junctions ; Equations ; Field-dependent mobility ; JFET ; JFETs ; junction field effect transistor (JFET) ; Logic gates ; Mathematical analysis ; Mathematical model ; Mathematical models ; physics-based model ; Saturation ; Silicon ; Silicon carbide ; silicon carbide (SiC)</subject><ispartof>IEEE transactions on industry applications, 2011-01, Vol.47 (1), p.199-211</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan/Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c05a12519727a1df337b4c27fdfcd1b85138ebf7155764e0fc4f7d4741928d733</citedby><cites>FETCH-LOGICAL-c369t-c05a12519727a1df337b4c27fdfcd1b85138ebf7155764e0fc4f7d4741928d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5620973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5620973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Platania, E</creatorcontrib><creatorcontrib>Zhiyang Chen</creatorcontrib><creatorcontrib>Chimento, Filippo</creatorcontrib><creatorcontrib>Grekov, Alexander E</creatorcontrib><creatorcontrib>Ruiyun Fu</creatorcontrib><creatorcontrib>Liqing Lu</creatorcontrib><creatorcontrib>Raciti, Angelo</creatorcontrib><creatorcontrib>Hudgins, Jerry L</creatorcontrib><creatorcontrib>Mantooth, H A</creatorcontrib><creatorcontrib>Sheridan, D C</creatorcontrib><creatorcontrib>Casady, J</creatorcontrib><creatorcontrib>Santi, Enrico</creatorcontrib><title>A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>In this paper, a physical model for a SiC Junction Field Effect Transistor (JFET) is presented. The novel feature of the model is that the mobility dependence on both temperature and electric field is taken into account. This is particularly important for high-current power devices where the maximum conduction current is limited by drift velocity saturation in the channel. The model equations are described in detail, emphasizing the differences introduced by the field-dependent mobility model. The model is then implemented in Pspice. Both static and dynamic simulation results are given. The results are validated with experimental results under static conditions and under resistive and inductive switching conditions.</description><subject>Accounting</subject><subject>Channels</subject><subject>Electric fields</subject><subject>Electrical junctions</subject><subject>Equations</subject><subject>Field-dependent mobility</subject><subject>JFET</subject><subject>JFETs</subject><subject>junction field effect transistor (JFET)</subject><subject>Logic gates</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>physics-based model</subject><subject>Saturation</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkDFPwzAUhC0EEqWwI7FELEwuduzE8VhKC0VFINHOVmI_g6s0KXYy9N_j0oqB6enpvjudDqFrSkaUEnm_nI9HKYlfSiQpODtBAyqZxJLl4hQNCJEMSyn5OboIYU0I5RnlA7QaJ-9fu-B0wA9lAJO8tgbqxLY-KZMPN0leZtNlMta67ZvONZ-_yrQG3Xmn8cxBbfAjbKEx0HTRXLnadbtLdGbLOsDV8Q7RKsZMnvHi7Wk-GS-wZrnssCZZSdOMSpGKkhrLmKi4ToU1VhtaFRllBVRW0CwTOQdiNbfCcMGpTAsjGBuiu0Pu1rffPYRObVzQUNdlA20fVJHTjEnBZCRv_5HrtvdNLKcKnstUCFlEiBwg7dsQPFi19W5T-p2iRO1XVnFltV9ZHVeOlpuDxQHAH57lUY_9fgDY0XXf</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Platania, E</creator><creator>Zhiyang Chen</creator><creator>Chimento, Filippo</creator><creator>Grekov, Alexander E</creator><creator>Ruiyun Fu</creator><creator>Liqing Lu</creator><creator>Raciti, Angelo</creator><creator>Hudgins, Jerry L</creator><creator>Mantooth, H A</creator><creator>Sheridan, D C</creator><creator>Casady, J</creator><creator>Santi, Enrico</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201101</creationdate><title>A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility</title><author>Platania, E ; Zhiyang Chen ; Chimento, Filippo ; Grekov, Alexander E ; Ruiyun Fu ; Liqing Lu ; Raciti, Angelo ; Hudgins, Jerry L ; Mantooth, H A ; Sheridan, D C ; Casady, J ; Santi, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c05a12519727a1df337b4c27fdfcd1b85138ebf7155764e0fc4f7d4741928d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accounting</topic><topic>Channels</topic><topic>Electric fields</topic><topic>Electrical junctions</topic><topic>Equations</topic><topic>Field-dependent mobility</topic><topic>JFET</topic><topic>JFETs</topic><topic>junction field effect transistor (JFET)</topic><topic>Logic gates</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>physics-based model</topic><topic>Saturation</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platania, E</creatorcontrib><creatorcontrib>Zhiyang Chen</creatorcontrib><creatorcontrib>Chimento, Filippo</creatorcontrib><creatorcontrib>Grekov, Alexander E</creatorcontrib><creatorcontrib>Ruiyun Fu</creatorcontrib><creatorcontrib>Liqing Lu</creatorcontrib><creatorcontrib>Raciti, Angelo</creatorcontrib><creatorcontrib>Hudgins, Jerry L</creatorcontrib><creatorcontrib>Mantooth, H A</creatorcontrib><creatorcontrib>Sheridan, D C</creatorcontrib><creatorcontrib>Casady, J</creatorcontrib><creatorcontrib>Santi, Enrico</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Platania, E</au><au>Zhiyang Chen</au><au>Chimento, Filippo</au><au>Grekov, Alexander E</au><au>Ruiyun Fu</au><au>Liqing Lu</au><au>Raciti, Angelo</au><au>Hudgins, Jerry L</au><au>Mantooth, H A</au><au>Sheridan, D C</au><au>Casady, J</au><au>Santi, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2011-01</date><risdate>2011</risdate><volume>47</volume><issue>1</issue><spage>199</spage><epage>211</epage><pages>199-211</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>In this paper, a physical model for a SiC Junction Field Effect Transistor (JFET) is presented. The novel feature of the model is that the mobility dependence on both temperature and electric field is taken into account. This is particularly important for high-current power devices where the maximum conduction current is limited by drift velocity saturation in the channel. The model equations are described in detail, emphasizing the differences introduced by the field-dependent mobility model. The model is then implemented in Pspice. Both static and dynamic simulation results are given. The results are validated with experimental results under static conditions and under resistive and inductive switching conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2010.2090843</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2011-01, Vol.47 (1), p.199-211
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2010_2090843
source IEEE Electronic Library (IEL)
subjects Accounting
Channels
Electric fields
Electrical junctions
Equations
Field-dependent mobility
JFET
JFETs
junction field effect transistor (JFET)
Logic gates
Mathematical analysis
Mathematical model
Mathematical models
physics-based model
Saturation
Silicon
Silicon carbide
silicon carbide (SiC)
title A Physics-Based Model for a SiC JFET Accounting for Electric-Field-Dependent Mobility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physics-Based%20Model%20for%20a%20SiC%20JFET%20Accounting%20for%20Electric-Field-Dependent%20Mobility&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Platania,%20E&rft.date=2011-01&rft.volume=47&rft.issue=1&rft.spage=199&rft.epage=211&rft.pages=199-211&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2010.2090843&rft_dat=%3Cproquest_RIE%3E861539739%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=846927798&rft_id=info:pmid/&rft_ieee_id=5620973&rfr_iscdi=true