Human Vital Signs Estimation Using Resonance Sparse Spectrum Decomposition

The noncontact measurement and monitoring of human vital signs has evolved into a valuable tool for efficient health management. Because of the greater penetration capability through material and clothes, which is less affected by environmental conditions such as illumination, temperature, and humid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on human-machine systems 2024-06, Vol.54 (3), p.304-316
Hauptverfasser: Singh, Anuradha, Rehman, Saeed Ur, Yongchareon, Sira, Chong, Peter Han Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 3
container_start_page 304
container_title IEEE transactions on human-machine systems
container_volume 54
creator Singh, Anuradha
Rehman, Saeed Ur
Yongchareon, Sira
Chong, Peter Han Joo
description The noncontact measurement and monitoring of human vital signs has evolved into a valuable tool for efficient health management. Because of the greater penetration capability through material and clothes, which is less affected by environmental conditions such as illumination, temperature, and humidity, mmWave radar has been extensively researched for human vital sign measurement in the past years. However, interference due to unwanted clutter, random body movement, and respiration harmonics make accurate retrieval of the heart rate (HR) difficult. This article proposes a resonance sparse spectrum decomposition (RSSD) algorithm and harmonics used algorithm (HUA) for accurate HR extraction. RSSD addresses the clutter and random body movement effects from phase signals, while HUA uses harmonics to extract HR accurately. A set of controlled experiments was conducted under different scenarios, and the proposed method is validated against ground truth HR/RR data collected by a smart vest. Our results show an accuracy of up to 98%-100% for distances up to 2 m. The method substantially improves HR estimation accuracy by effectively mitigating the effects of noise in the phase signal, even under heavy clutter and moderate body movement. Our results demonstrate that the proposed method effectively counters harmonic interference for accurate estimation of HR comparable to RR estimation up to a distance of 4 m from the radar sensor.
doi_str_mv 10.1109/THMS.2024.3381074
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_THMS_2024_3381074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10497169</ieee_id><sourcerecordid>3059520541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5d50080854368c7f733821390cb8b8fc246e8b89f7db40d83b33636c1a299bb03</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGo_gOAh4Hlr_u4mR6nVVSqCbb2GbJotKd3Nmuwe_PZmaQXnMu_wm3kzD4BbjOYYI_mwKd_Xc4IIm1MqMCrYBZgQnIuMUMQv_zSR-BrMYjygVIJwzsUEvJVDo1v45Xp9hGu3byNcxt41une-hdvo2j38tNG3ujUWrjsd4tis6cPQwCdrfNP56Eb6BlzV-hjt7NynYPu83CzKbPXx8rp4XGWGsLzP-I4neyQ4o7kwRV2kmwmmEplKVKIeIZuErItdxdBO0IrSnOYGayJlVSE6BfenvV3w34ONvTr4IbTJUqV3JSeIM5wofKJM8DEGW6supLfCj8JIjampMTU1pqbOqaWZu9OMs9b-45kscC7pLwoPZ1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059520541</pqid></control><display><type>article</type><title>Human Vital Signs Estimation Using Resonance Sparse Spectrum Decomposition</title><source>IEEE Xplore</source><creator>Singh, Anuradha ; Rehman, Saeed Ur ; Yongchareon, Sira ; Chong, Peter Han Joo</creator><creatorcontrib>Singh, Anuradha ; Rehman, Saeed Ur ; Yongchareon, Sira ; Chong, Peter Han Joo</creatorcontrib><description>The noncontact measurement and monitoring of human vital signs has evolved into a valuable tool for efficient health management. Because of the greater penetration capability through material and clothes, which is less affected by environmental conditions such as illumination, temperature, and humidity, mmWave radar has been extensively researched for human vital sign measurement in the past years. However, interference due to unwanted clutter, random body movement, and respiration harmonics make accurate retrieval of the heart rate (HR) difficult. This article proposes a resonance sparse spectrum decomposition (RSSD) algorithm and harmonics used algorithm (HUA) for accurate HR extraction. RSSD addresses the clutter and random body movement effects from phase signals, while HUA uses harmonics to extract HR accurately. A set of controlled experiments was conducted under different scenarios, and the proposed method is validated against ground truth HR/RR data collected by a smart vest. Our results show an accuracy of up to 98%-100% for distances up to 2 m. The method substantially improves HR estimation accuracy by effectively mitigating the effects of noise in the phase signal, even under heavy clutter and moderate body movement. Our results demonstrate that the proposed method effectively counters harmonic interference for accurate estimation of HR comparable to RR estimation up to a distance of 4 m from the radar sensor.</description><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/THMS.2024.3381074</identifier><identifier>CODEN: ITHSA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biomedical monitoring ; Clutter ; Contactless ; Decomposition ; frequency-modulated continuous waveform radar ; Harmonic analysis ; Harmonics ; Heart rate ; Interference ; Millimeter waves ; Noise ; Q-factor ; Radar ; Resonance ; resonance sparse spectrum decomposition (RSSD) ; vital sign ; Wavelet transforms</subject><ispartof>IEEE transactions on human-machine systems, 2024-06, Vol.54 (3), p.304-316</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5d50080854368c7f733821390cb8b8fc246e8b89f7db40d83b33636c1a299bb03</cites><orcidid>0000-0002-0315-3710 ; 0000-0002-5375-8961 ; 0000-0002-2880-6618 ; 0000-0002-2159-865X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10497169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10497169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Singh, Anuradha</creatorcontrib><creatorcontrib>Rehman, Saeed Ur</creatorcontrib><creatorcontrib>Yongchareon, Sira</creatorcontrib><creatorcontrib>Chong, Peter Han Joo</creatorcontrib><title>Human Vital Signs Estimation Using Resonance Sparse Spectrum Decomposition</title><title>IEEE transactions on human-machine systems</title><addtitle>THMS</addtitle><description>The noncontact measurement and monitoring of human vital signs has evolved into a valuable tool for efficient health management. Because of the greater penetration capability through material and clothes, which is less affected by environmental conditions such as illumination, temperature, and humidity, mmWave radar has been extensively researched for human vital sign measurement in the past years. However, interference due to unwanted clutter, random body movement, and respiration harmonics make accurate retrieval of the heart rate (HR) difficult. This article proposes a resonance sparse spectrum decomposition (RSSD) algorithm and harmonics used algorithm (HUA) for accurate HR extraction. RSSD addresses the clutter and random body movement effects from phase signals, while HUA uses harmonics to extract HR accurately. A set of controlled experiments was conducted under different scenarios, and the proposed method is validated against ground truth HR/RR data collected by a smart vest. Our results show an accuracy of up to 98%-100% for distances up to 2 m. The method substantially improves HR estimation accuracy by effectively mitigating the effects of noise in the phase signal, even under heavy clutter and moderate body movement. Our results demonstrate that the proposed method effectively counters harmonic interference for accurate estimation of HR comparable to RR estimation up to a distance of 4 m from the radar sensor.</description><subject>Algorithms</subject><subject>Biomedical monitoring</subject><subject>Clutter</subject><subject>Contactless</subject><subject>Decomposition</subject><subject>frequency-modulated continuous waveform radar</subject><subject>Harmonic analysis</subject><subject>Harmonics</subject><subject>Heart rate</subject><subject>Interference</subject><subject>Millimeter waves</subject><subject>Noise</subject><subject>Q-factor</subject><subject>Radar</subject><subject>Resonance</subject><subject>resonance sparse spectrum decomposition (RSSD)</subject><subject>vital sign</subject><subject>Wavelet transforms</subject><issn>2168-2291</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGo_gOAh4Hlr_u4mR6nVVSqCbb2GbJotKd3Nmuwe_PZmaQXnMu_wm3kzD4BbjOYYI_mwKd_Xc4IIm1MqMCrYBZgQnIuMUMQv_zSR-BrMYjygVIJwzsUEvJVDo1v45Xp9hGu3byNcxt41une-hdvo2j38tNG3ujUWrjsd4tis6cPQwCdrfNP56Eb6BlzV-hjt7NynYPu83CzKbPXx8rp4XGWGsLzP-I4neyQ4o7kwRV2kmwmmEplKVKIeIZuErItdxdBO0IrSnOYGayJlVSE6BfenvV3w34ONvTr4IbTJUqV3JSeIM5wofKJM8DEGW6supLfCj8JIjampMTU1pqbOqaWZu9OMs9b-45kscC7pLwoPZ1k</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Singh, Anuradha</creator><creator>Rehman, Saeed Ur</creator><creator>Yongchareon, Sira</creator><creator>Chong, Peter Han Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0315-3710</orcidid><orcidid>https://orcid.org/0000-0002-5375-8961</orcidid><orcidid>https://orcid.org/0000-0002-2880-6618</orcidid><orcidid>https://orcid.org/0000-0002-2159-865X</orcidid></search><sort><creationdate>20240601</creationdate><title>Human Vital Signs Estimation Using Resonance Sparse Spectrum Decomposition</title><author>Singh, Anuradha ; Rehman, Saeed Ur ; Yongchareon, Sira ; Chong, Peter Han Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5d50080854368c7f733821390cb8b8fc246e8b89f7db40d83b33636c1a299bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biomedical monitoring</topic><topic>Clutter</topic><topic>Contactless</topic><topic>Decomposition</topic><topic>frequency-modulated continuous waveform radar</topic><topic>Harmonic analysis</topic><topic>Harmonics</topic><topic>Heart rate</topic><topic>Interference</topic><topic>Millimeter waves</topic><topic>Noise</topic><topic>Q-factor</topic><topic>Radar</topic><topic>Resonance</topic><topic>resonance sparse spectrum decomposition (RSSD)</topic><topic>vital sign</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Anuradha</creatorcontrib><creatorcontrib>Rehman, Saeed Ur</creatorcontrib><creatorcontrib>Yongchareon, Sira</creatorcontrib><creatorcontrib>Chong, Peter Han Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Singh, Anuradha</au><au>Rehman, Saeed Ur</au><au>Yongchareon, Sira</au><au>Chong, Peter Han Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Vital Signs Estimation Using Resonance Sparse Spectrum Decomposition</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>THMS</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>54</volume><issue>3</issue><spage>304</spage><epage>316</epage><pages>304-316</pages><issn>2168-2291</issn><eissn>2168-2305</eissn><coden>ITHSA6</coden><abstract>The noncontact measurement and monitoring of human vital signs has evolved into a valuable tool for efficient health management. Because of the greater penetration capability through material and clothes, which is less affected by environmental conditions such as illumination, temperature, and humidity, mmWave radar has been extensively researched for human vital sign measurement in the past years. However, interference due to unwanted clutter, random body movement, and respiration harmonics make accurate retrieval of the heart rate (HR) difficult. This article proposes a resonance sparse spectrum decomposition (RSSD) algorithm and harmonics used algorithm (HUA) for accurate HR extraction. RSSD addresses the clutter and random body movement effects from phase signals, while HUA uses harmonics to extract HR accurately. A set of controlled experiments was conducted under different scenarios, and the proposed method is validated against ground truth HR/RR data collected by a smart vest. Our results show an accuracy of up to 98%-100% for distances up to 2 m. The method substantially improves HR estimation accuracy by effectively mitigating the effects of noise in the phase signal, even under heavy clutter and moderate body movement. Our results demonstrate that the proposed method effectively counters harmonic interference for accurate estimation of HR comparable to RR estimation up to a distance of 4 m from the radar sensor.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/THMS.2024.3381074</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0315-3710</orcidid><orcidid>https://orcid.org/0000-0002-5375-8961</orcidid><orcidid>https://orcid.org/0000-0002-2880-6618</orcidid><orcidid>https://orcid.org/0000-0002-2159-865X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2291
ispartof IEEE transactions on human-machine systems, 2024-06, Vol.54 (3), p.304-316
issn 2168-2291
2168-2305
language eng
recordid cdi_crossref_primary_10_1109_THMS_2024_3381074
source IEEE Xplore
subjects Algorithms
Biomedical monitoring
Clutter
Contactless
Decomposition
frequency-modulated continuous waveform radar
Harmonic analysis
Harmonics
Heart rate
Interference
Millimeter waves
Noise
Q-factor
Radar
Resonance
resonance sparse spectrum decomposition (RSSD)
vital sign
Wavelet transforms
title Human Vital Signs Estimation Using Resonance Sparse Spectrum Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Vital%20Signs%20Estimation%20Using%20Resonance%20Sparse%20Spectrum%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Singh,%20Anuradha&rft.date=2024-06-01&rft.volume=54&rft.issue=3&rft.spage=304&rft.epage=316&rft.pages=304-316&rft.issn=2168-2291&rft.eissn=2168-2305&rft.coden=ITHSA6&rft_id=info:doi/10.1109/THMS.2024.3381074&rft_dat=%3Cproquest_RIE%3E3059520541%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059520541&rft_id=info:pmid/&rft_ieee_id=10497169&rfr_iscdi=true