ASL Trigger Recognition in Mixed Activity/Signing Sequences for RF Sensor-Based User Interfaces
The past decade has seen great advancements in speech recognition for control of interactive devices, personal assistants, and computer interfaces. However, deaf and hard-of-hearing (HoH) individuals, whose primary mode of communication is sign language, cannot use voice-controlled interfaces. Altho...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2022-08, Vol.52 (4), p.699-712 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 712 |
---|---|
container_issue | 4 |
container_start_page | 699 |
container_title | IEEE transactions on human-machine systems |
container_volume | 52 |
creator | Kurtoglu, Emre Gurbuz, Ali C. Malaia, Evie A. Griffin, Darrin Crawford, Chris Gurbuz, Sevgi Z. |
description | The past decade has seen great advancements in speech recognition for control of interactive devices, personal assistants, and computer interfaces. However, deaf and hard-of-hearing (HoH) individuals, whose primary mode of communication is sign language, cannot use voice-controlled interfaces. Although there has been significant work in video-based sign language recognition, video is not effective in the dark and has raised privacy concerns in the deaf community when used in the context of human ambient intelligence. RF sensors have been recently proposed as a new modality that can be effective under the circumstances where video is not. This article considers the problem of recognizing a trigger sign (wake word) in the context of daily living, where gross motor activities are interwoven with signing sequences. The proposed approach exploits multiple RF data domain representations (time-frequency, range-Doppler, and range-angle) for sequential classification of mixed motion data streams. The recognition accuracy of signs with varying kinematic properties is compared and used to make recommendations on appropriate trigger sign selection for RF-sensor-based user interfaces. The proposed approach achieves a trigger sign detection rate of 98.9% and a classification accuracy of 92% for 15 ASL words and three gross motor activities. |
doi_str_mv | 10.1109/THMS.2021.3131675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_THMS_2021_3131675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9660776</ieee_id><sourcerecordid>2689805816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a77ae901ba7de7894497418169e26576c61a0e9cb914f3ad98212952838d99a13</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWLQfQLwseN42k2z-HWuxttAiuO05pLvZJUWzNdmK_famtDqXGTK_9yY8hB4AjwCwGq_nq3JEMIERBQpcsCs0IMBlTihm138zUXCLhjHucCpJGGNygPSkXGbr4NrWhuzdVl3rXe86nzmfrdyPrbNJ1btv1x_HpUs732al_TpYX9mYNV3SzNKDj13In01M-CYmo4XvbWhMYu7RTWM-oh1e-h3azF7W03m-fHtdTCfLvKKU97kRwliFYWtEbYVURaFEARK4soQzwSsOBltVbRUUDTW1kgSIYkRSWStlgN6hp7PvPnTpe7HXu-4QfDqpCZdKYpbMEgVnqgpdjME2eh_cpwlHDVifotSnKPUpSn2JMmkezxpnrf3nFedYCE5_AfTmbbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689805816</pqid></control><display><type>article</type><title>ASL Trigger Recognition in Mixed Activity/Signing Sequences for RF Sensor-Based User Interfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Kurtoglu, Emre ; Gurbuz, Ali C. ; Malaia, Evie A. ; Griffin, Darrin ; Crawford, Chris ; Gurbuz, Sevgi Z.</creator><creatorcontrib>Kurtoglu, Emre ; Gurbuz, Ali C. ; Malaia, Evie A. ; Griffin, Darrin ; Crawford, Chris ; Gurbuz, Sevgi Z.</creatorcontrib><description>The past decade has seen great advancements in speech recognition for control of interactive devices, personal assistants, and computer interfaces. However, deaf and hard-of-hearing (HoH) individuals, whose primary mode of communication is sign language, cannot use voice-controlled interfaces. Although there has been significant work in video-based sign language recognition, video is not effective in the dark and has raised privacy concerns in the deaf community when used in the context of human ambient intelligence. RF sensors have been recently proposed as a new modality that can be effective under the circumstances where video is not. This article considers the problem of recognizing a trigger sign (wake word) in the context of daily living, where gross motor activities are interwoven with signing sequences. The proposed approach exploits multiple RF data domain representations (time-frequency, range-Doppler, and range-angle) for sequential classification of mixed motion data streams. The recognition accuracy of signs with varying kinematic properties is compared and used to make recommendations on appropriate trigger sign selection for RF-sensor-based user interfaces. The proposed approach achieves a trigger sign detection rate of 98.9% and a classification accuracy of 92% for 15 ASL words and three gross motor activities.</description><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/THMS.2021.3131675</identifier><identifier>CODEN: ITHSA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ambient intelligence ; American sign language (ASL) ; Assistive technologies ; Chirp ; Classification ; Context ; Data transmission ; Deafness ; Gesture recognition ; human-computer interaction ; Interactive control ; Kinematics ; Radar ; Radio frequency ; Sensors ; Sign language ; Speech recognition ; trigger detection ; User interface ; User interfaces ; Voice communication ; Voice control ; wake word</subject><ispartof>IEEE transactions on human-machine systems, 2022-08, Vol.52 (4), p.699-712</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a77ae901ba7de7894497418169e26576c61a0e9cb914f3ad98212952838d99a13</citedby><cites>FETCH-LOGICAL-c336t-a77ae901ba7de7894497418169e26576c61a0e9cb914f3ad98212952838d99a13</cites><orcidid>0000-0003-3127-308X ; 0000-0001-8923-0299 ; 0000-0002-4700-0257 ; 0000-0001-7487-9087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9660776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9660776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurtoglu, Emre</creatorcontrib><creatorcontrib>Gurbuz, Ali C.</creatorcontrib><creatorcontrib>Malaia, Evie A.</creatorcontrib><creatorcontrib>Griffin, Darrin</creatorcontrib><creatorcontrib>Crawford, Chris</creatorcontrib><creatorcontrib>Gurbuz, Sevgi Z.</creatorcontrib><title>ASL Trigger Recognition in Mixed Activity/Signing Sequences for RF Sensor-Based User Interfaces</title><title>IEEE transactions on human-machine systems</title><addtitle>THMS</addtitle><description>The past decade has seen great advancements in speech recognition for control of interactive devices, personal assistants, and computer interfaces. However, deaf and hard-of-hearing (HoH) individuals, whose primary mode of communication is sign language, cannot use voice-controlled interfaces. Although there has been significant work in video-based sign language recognition, video is not effective in the dark and has raised privacy concerns in the deaf community when used in the context of human ambient intelligence. RF sensors have been recently proposed as a new modality that can be effective under the circumstances where video is not. This article considers the problem of recognizing a trigger sign (wake word) in the context of daily living, where gross motor activities are interwoven with signing sequences. The proposed approach exploits multiple RF data domain representations (time-frequency, range-Doppler, and range-angle) for sequential classification of mixed motion data streams. The recognition accuracy of signs with varying kinematic properties is compared and used to make recommendations on appropriate trigger sign selection for RF-sensor-based user interfaces. The proposed approach achieves a trigger sign detection rate of 98.9% and a classification accuracy of 92% for 15 ASL words and three gross motor activities.</description><subject>Ambient intelligence</subject><subject>American sign language (ASL)</subject><subject>Assistive technologies</subject><subject>Chirp</subject><subject>Classification</subject><subject>Context</subject><subject>Data transmission</subject><subject>Deafness</subject><subject>Gesture recognition</subject><subject>human-computer interaction</subject><subject>Interactive control</subject><subject>Kinematics</subject><subject>Radar</subject><subject>Radio frequency</subject><subject>Sensors</subject><subject>Sign language</subject><subject>Speech recognition</subject><subject>trigger detection</subject><subject>User interface</subject><subject>User interfaces</subject><subject>Voice communication</subject><subject>Voice control</subject><subject>wake word</subject><issn>2168-2291</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWLQfQLwseN42k2z-HWuxttAiuO05pLvZJUWzNdmK_famtDqXGTK_9yY8hB4AjwCwGq_nq3JEMIERBQpcsCs0IMBlTihm138zUXCLhjHucCpJGGNygPSkXGbr4NrWhuzdVl3rXe86nzmfrdyPrbNJ1btv1x_HpUs732al_TpYX9mYNV3SzNKDj13In01M-CYmo4XvbWhMYu7RTWM-oh1e-h3azF7W03m-fHtdTCfLvKKU97kRwliFYWtEbYVURaFEARK4soQzwSsOBltVbRUUDTW1kgSIYkRSWStlgN6hp7PvPnTpe7HXu-4QfDqpCZdKYpbMEgVnqgpdjME2eh_cpwlHDVifotSnKPUpSn2JMmkezxpnrf3nFedYCE5_AfTmbbs</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Kurtoglu, Emre</creator><creator>Gurbuz, Ali C.</creator><creator>Malaia, Evie A.</creator><creator>Griffin, Darrin</creator><creator>Crawford, Chris</creator><creator>Gurbuz, Sevgi Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3127-308X</orcidid><orcidid>https://orcid.org/0000-0001-8923-0299</orcidid><orcidid>https://orcid.org/0000-0002-4700-0257</orcidid><orcidid>https://orcid.org/0000-0001-7487-9087</orcidid></search><sort><creationdate>202208</creationdate><title>ASL Trigger Recognition in Mixed Activity/Signing Sequences for RF Sensor-Based User Interfaces</title><author>Kurtoglu, Emre ; Gurbuz, Ali C. ; Malaia, Evie A. ; Griffin, Darrin ; Crawford, Chris ; Gurbuz, Sevgi Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a77ae901ba7de7894497418169e26576c61a0e9cb914f3ad98212952838d99a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient intelligence</topic><topic>American sign language (ASL)</topic><topic>Assistive technologies</topic><topic>Chirp</topic><topic>Classification</topic><topic>Context</topic><topic>Data transmission</topic><topic>Deafness</topic><topic>Gesture recognition</topic><topic>human-computer interaction</topic><topic>Interactive control</topic><topic>Kinematics</topic><topic>Radar</topic><topic>Radio frequency</topic><topic>Sensors</topic><topic>Sign language</topic><topic>Speech recognition</topic><topic>trigger detection</topic><topic>User interface</topic><topic>User interfaces</topic><topic>Voice communication</topic><topic>Voice control</topic><topic>wake word</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurtoglu, Emre</creatorcontrib><creatorcontrib>Gurbuz, Ali C.</creatorcontrib><creatorcontrib>Malaia, Evie A.</creatorcontrib><creatorcontrib>Griffin, Darrin</creatorcontrib><creatorcontrib>Crawford, Chris</creatorcontrib><creatorcontrib>Gurbuz, Sevgi Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurtoglu, Emre</au><au>Gurbuz, Ali C.</au><au>Malaia, Evie A.</au><au>Griffin, Darrin</au><au>Crawford, Chris</au><au>Gurbuz, Sevgi Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASL Trigger Recognition in Mixed Activity/Signing Sequences for RF Sensor-Based User Interfaces</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>THMS</stitle><date>2022-08</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>699</spage><epage>712</epage><pages>699-712</pages><issn>2168-2291</issn><eissn>2168-2305</eissn><coden>ITHSA6</coden><abstract>The past decade has seen great advancements in speech recognition for control of interactive devices, personal assistants, and computer interfaces. However, deaf and hard-of-hearing (HoH) individuals, whose primary mode of communication is sign language, cannot use voice-controlled interfaces. Although there has been significant work in video-based sign language recognition, video is not effective in the dark and has raised privacy concerns in the deaf community when used in the context of human ambient intelligence. RF sensors have been recently proposed as a new modality that can be effective under the circumstances where video is not. This article considers the problem of recognizing a trigger sign (wake word) in the context of daily living, where gross motor activities are interwoven with signing sequences. The proposed approach exploits multiple RF data domain representations (time-frequency, range-Doppler, and range-angle) for sequential classification of mixed motion data streams. The recognition accuracy of signs with varying kinematic properties is compared and used to make recommendations on appropriate trigger sign selection for RF-sensor-based user interfaces. The proposed approach achieves a trigger sign detection rate of 98.9% and a classification accuracy of 92% for 15 ASL words and three gross motor activities.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/THMS.2021.3131675</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3127-308X</orcidid><orcidid>https://orcid.org/0000-0001-8923-0299</orcidid><orcidid>https://orcid.org/0000-0002-4700-0257</orcidid><orcidid>https://orcid.org/0000-0001-7487-9087</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2291 |
ispartof | IEEE transactions on human-machine systems, 2022-08, Vol.52 (4), p.699-712 |
issn | 2168-2291 2168-2305 |
language | eng |
recordid | cdi_crossref_primary_10_1109_THMS_2021_3131675 |
source | IEEE Electronic Library (IEL) |
subjects | Ambient intelligence American sign language (ASL) Assistive technologies Chirp Classification Context Data transmission Deafness Gesture recognition human-computer interaction Interactive control Kinematics Radar Radio frequency Sensors Sign language Speech recognition trigger detection User interface User interfaces Voice communication Voice control wake word |
title | ASL Trigger Recognition in Mixed Activity/Signing Sequences for RF Sensor-Based User Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASL%20Trigger%20Recognition%20in%20Mixed%20Activity/Signing%20Sequences%20for%20RF%20Sensor-Based%20User%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Kurtoglu,%20Emre&rft.date=2022-08&rft.volume=52&rft.issue=4&rft.spage=699&rft.epage=712&rft.pages=699-712&rft.issn=2168-2291&rft.eissn=2168-2305&rft.coden=ITHSA6&rft_id=info:doi/10.1109/THMS.2021.3131675&rft_dat=%3Cproquest_RIE%3E2689805816%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689805816&rft_id=info:pmid/&rft_ieee_id=9660776&rfr_iscdi=true |