CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model
Although thermal remote sensing is the optimal method to measure large-scale land surface temperature (LST), its application has been severely constrained due to cloud contamination and the tradeoff between temporal and spatial resolutions. The integrated technology of LST gap filling and downscalin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-16 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Gao, Jinhua Sun, Hao Xu, Zhenheng Zhang, Tian Xu, Huanyu Wu, Dan Zhao, Xiang |
description | Although thermal remote sensing is the optimal method to measure large-scale land surface temperature (LST), its application has been severely constrained due to cloud contamination and the tradeoff between temporal and spatial resolutions. The integrated technology of LST gap filling and downscaling is an effective method to break through these limitations. In this study, we proposed an integrated technology of gap filling and downscaling to generate daily 30-m all-weather LST by coupling a physical model, machine learning (ML), and spatiotemporal fusion model, termed CPMF. CPMF comprises three modules: 1) estimating 1-km LST based on the surface energy balance theory (SEB-LST1 km); 2) generating spatially complete 1-km LST coupling ML (CRLST1 km); and 3) all-weather 30-m LST from the CRLST1 km combining the spatiotemporal fusion downscaling and ML downscaling in an equal-weighted manner (CPMF-LST30 m). Then, satellite data, reanalysis data, airborne data, and in situ LST data were used to evaluate the CPMF's performance. Results showed that: 1) SEB-LST1 km correlates well with clear-sky MODIS-LST (mean Pearson's {R}~\approx ~0.70 and mean RMSE \approx ~3.62 K); 2) CRLST1 km has a high correlation with MODIS-LST and reanalysis-LST, outperforming other four existing gap-filling products; 3) CPMF-LST30 m achieves good accuracy, with Pearson's R of 0.86-0.96 (RMSE |
doi_str_mv | 10.1109/TGRS.2024.3505933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3505933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10767269</ieee_id><sourcerecordid>3143028543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c913-e0a025912c4b75be330e609f22f36c9ccf8b7ba583d686756b591d27fe6de0433</originalsourceid><addsrcrecordid>eNpNkb1OwzAUhS0EEuXnAZAYLLE2xT-xE7NVFS1IrUC0EmPkODdtqtQOTjL0hXhOHMrAdIf7fecMB6E7SiaUEvW4WXysJ4yweMIFEYrzMzSiQqQRkXF8jkaEKhmxVLFLdNW2e0JoLGgyQt-z99X8CU8tfrUdbL3uoMAbMDvrarc94tJ5vAAL4VHZLeYkOozxtK6jT9DdDjxealvgde9LbSCIh2ZAew84P-KZ65t60N53x7YyusYrV0A9xittdpUFvATtbQDG-DelCSWuCxnOB3bet5WzJ-UGXZS6buH2716jzfx5M3uJlm-L19l0GRlFeQREEyYUZSbOE5ED5wQkUSVjJZdGGVOmeZJrkfJCpjIRMg9wwZISZAEk5vwaPZxiG---emi7bO96b0NjxmnMCUvFL0VPlPGubT2UWeOrg_bHjJJsWCMb1siGNbK_NYJzf3IqAPjHJzJhUvEfVGSGmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028543</pqid></control><display><type>article</type><title>CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Jinhua ; Sun, Hao ; Xu, Zhenheng ; Zhang, Tian ; Xu, Huanyu ; Wu, Dan ; Zhao, Xiang</creator><creatorcontrib>Gao, Jinhua ; Sun, Hao ; Xu, Zhenheng ; Zhang, Tian ; Xu, Huanyu ; Wu, Dan ; Zhao, Xiang</creatorcontrib><description><![CDATA[Although thermal remote sensing is the optimal method to measure large-scale land surface temperature (LST), its application has been severely constrained due to cloud contamination and the tradeoff between temporal and spatial resolutions. The integrated technology of LST gap filling and downscaling is an effective method to break through these limitations. In this study, we proposed an integrated technology of gap filling and downscaling to generate daily 30-m all-weather LST by coupling a physical model, machine learning (ML), and spatiotemporal fusion model, termed CPMF. CPMF comprises three modules: 1) estimating 1-km LST based on the surface energy balance theory (SEB-LST1 km); 2) generating spatially complete 1-km LST coupling ML (CRLST1 km); and 3) all-weather 30-m LST from the CRLST1 km combining the spatiotemporal fusion downscaling and ML downscaling in an equal-weighted manner (CPMF-LST30 m). Then, satellite data, reanalysis data, airborne data, and in situ LST data were used to evaluate the CPMF's performance. Results showed that: 1) SEB-LST1 km correlates well with clear-sky MODIS-LST (mean Pearson's <inline-formula> <tex-math notation="LaTeX">{R}~\approx ~0.70 </tex-math></inline-formula> and mean RMSE <inline-formula> <tex-math notation="LaTeX">\approx ~3.62 </tex-math></inline-formula> K); 2) CRLST1 km has a high correlation with MODIS-LST and reanalysis-LST, outperforming other four existing gap-filling products; 3) CPMF-LST30 m achieves good accuracy, with Pearson's R of 0.86-0.96 (RMSE <3.40 K) against Landsat-LST, <inline-formula> <tex-math notation="LaTeX">{R} \,\, =0.66 </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">{P} \,\, \lt 0.01 </tex-math></inline-formula>) with airborne LST, and <inline-formula> <tex-math notation="LaTeX">{R} \,\, =0.97 </tex-math></inline-formula> (RMSE =4.25 K) with in situ LST, surpassing single-method downscaling; and 4) sensitivity analysis highlighted the importance of SEB-LST and CRLST in ML models, confirming the efficacy of the proposed physical model. CPMF provides a one-stop service for producing high-quality, long-term, all-weather LST data at a 30-m resolution.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3505933</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Coupling ; Couplings ; Data models ; Downscaling ; Energy balance ; gap filling ; Land surface ; Land surface temperature ; land surface temperature (LST) ; Learning algorithms ; Machine learning ; machine learning (ML) ; MODIS ; physical model ; Remote sensing ; Satellites ; Spatial resolution ; spatiotemporal fusion ; Spatiotemporal phenomena ; Surface energy ; Surface properties ; Surface temperature ; Weather</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0155-6735 ; 0000-0002-1570-1315 ; 0000-0002-2255-2661 ; 0000-0002-6315-4838 ; 0000-0003-2907-2764 ; 0000-0002-6234-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10767269$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10767269$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Jinhua</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Xu, Zhenheng</creatorcontrib><creatorcontrib>Zhang, Tian</creatorcontrib><creatorcontrib>Xu, Huanyu</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><title>CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Although thermal remote sensing is the optimal method to measure large-scale land surface temperature (LST), its application has been severely constrained due to cloud contamination and the tradeoff between temporal and spatial resolutions. The integrated technology of LST gap filling and downscaling is an effective method to break through these limitations. In this study, we proposed an integrated technology of gap filling and downscaling to generate daily 30-m all-weather LST by coupling a physical model, machine learning (ML), and spatiotemporal fusion model, termed CPMF. CPMF comprises three modules: 1) estimating 1-km LST based on the surface energy balance theory (SEB-LST1 km); 2) generating spatially complete 1-km LST coupling ML (CRLST1 km); and 3) all-weather 30-m LST from the CRLST1 km combining the spatiotemporal fusion downscaling and ML downscaling in an equal-weighted manner (CPMF-LST30 m). Then, satellite data, reanalysis data, airborne data, and in situ LST data were used to evaluate the CPMF's performance. Results showed that: 1) SEB-LST1 km correlates well with clear-sky MODIS-LST (mean Pearson's <inline-formula> <tex-math notation="LaTeX">{R}~\approx ~0.70 </tex-math></inline-formula> and mean RMSE <inline-formula> <tex-math notation="LaTeX">\approx ~3.62 </tex-math></inline-formula> K); 2) CRLST1 km has a high correlation with MODIS-LST and reanalysis-LST, outperforming other four existing gap-filling products; 3) CPMF-LST30 m achieves good accuracy, with Pearson's R of 0.86-0.96 (RMSE <3.40 K) against Landsat-LST, <inline-formula> <tex-math notation="LaTeX">{R} \,\, =0.66 </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">{P} \,\, \lt 0.01 </tex-math></inline-formula>) with airborne LST, and <inline-formula> <tex-math notation="LaTeX">{R} \,\, =0.97 </tex-math></inline-formula> (RMSE =4.25 K) with in situ LST, surpassing single-method downscaling; and 4) sensitivity analysis highlighted the importance of SEB-LST and CRLST in ML models, confirming the efficacy of the proposed physical model. CPMF provides a one-stop service for producing high-quality, long-term, all-weather LST data at a 30-m resolution.]]></description><subject>Accuracy</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Data models</subject><subject>Downscaling</subject><subject>Energy balance</subject><subject>gap filling</subject><subject>Land surface</subject><subject>Land surface temperature</subject><subject>land surface temperature (LST)</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>MODIS</subject><subject>physical model</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Spatial resolution</subject><subject>spatiotemporal fusion</subject><subject>Spatiotemporal phenomena</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface temperature</subject><subject>Weather</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkb1OwzAUhS0EEuXnAZAYLLE2xT-xE7NVFS1IrUC0EmPkODdtqtQOTjL0hXhOHMrAdIf7fecMB6E7SiaUEvW4WXysJ4yweMIFEYrzMzSiQqQRkXF8jkaEKhmxVLFLdNW2e0JoLGgyQt-z99X8CU8tfrUdbL3uoMAbMDvrarc94tJ5vAAL4VHZLeYkOozxtK6jT9DdDjxealvgde9LbSCIh2ZAew84P-KZ65t60N53x7YyusYrV0A9xittdpUFvATtbQDG-DelCSWuCxnOB3bet5WzJ-UGXZS6buH2716jzfx5M3uJlm-L19l0GRlFeQREEyYUZSbOE5ED5wQkUSVjJZdGGVOmeZJrkfJCpjIRMg9wwZISZAEk5vwaPZxiG---emi7bO96b0NjxmnMCUvFL0VPlPGubT2UWeOrg_bHjJJsWCMb1siGNbK_NYJzf3IqAPjHJzJhUvEfVGSGmw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gao, Jinhua</creator><creator>Sun, Hao</creator><creator>Xu, Zhenheng</creator><creator>Zhang, Tian</creator><creator>Xu, Huanyu</creator><creator>Wu, Dan</creator><creator>Zhao, Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0155-6735</orcidid><orcidid>https://orcid.org/0000-0002-1570-1315</orcidid><orcidid>https://orcid.org/0000-0002-2255-2661</orcidid><orcidid>https://orcid.org/0000-0002-6315-4838</orcidid><orcidid>https://orcid.org/0000-0003-2907-2764</orcidid><orcidid>https://orcid.org/0000-0002-6234-8075</orcidid></search><sort><creationdate>2024</creationdate><title>CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model</title><author>Gao, Jinhua ; Sun, Hao ; Xu, Zhenheng ; Zhang, Tian ; Xu, Huanyu ; Wu, Dan ; Zhao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c913-e0a025912c4b75be330e609f22f36c9ccf8b7ba583d686756b591d27fe6de0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Data models</topic><topic>Downscaling</topic><topic>Energy balance</topic><topic>gap filling</topic><topic>Land surface</topic><topic>Land surface temperature</topic><topic>land surface temperature (LST)</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>MODIS</topic><topic>physical model</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Spatial resolution</topic><topic>spatiotemporal fusion</topic><topic>Spatiotemporal phenomena</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface temperature</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jinhua</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Xu, Zhenheng</creatorcontrib><creatorcontrib>Zhang, Tian</creatorcontrib><creatorcontrib>Xu, Huanyu</creatorcontrib><creatorcontrib>Wu, Dan</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Jinhua</au><au>Sun, Hao</au><au>Xu, Zhenheng</au><au>Zhang, Tian</au><au>Xu, Huanyu</au><au>Wu, Dan</au><au>Zhao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Although thermal remote sensing is the optimal method to measure large-scale land surface temperature (LST), its application has been severely constrained due to cloud contamination and the tradeoff between temporal and spatial resolutions. The integrated technology of LST gap filling and downscaling is an effective method to break through these limitations. In this study, we proposed an integrated technology of gap filling and downscaling to generate daily 30-m all-weather LST by coupling a physical model, machine learning (ML), and spatiotemporal fusion model, termed CPMF. CPMF comprises three modules: 1) estimating 1-km LST based on the surface energy balance theory (SEB-LST1 km); 2) generating spatially complete 1-km LST coupling ML (CRLST1 km); and 3) all-weather 30-m LST from the CRLST1 km combining the spatiotemporal fusion downscaling and ML downscaling in an equal-weighted manner (CPMF-LST30 m). Then, satellite data, reanalysis data, airborne data, and in situ LST data were used to evaluate the CPMF's performance. Results showed that: 1) SEB-LST1 km correlates well with clear-sky MODIS-LST (mean Pearson's <inline-formula> <tex-math notation="LaTeX">{R}~\approx ~0.70 </tex-math></inline-formula> and mean RMSE <inline-formula> <tex-math notation="LaTeX">\approx ~3.62 </tex-math></inline-formula> K); 2) CRLST1 km has a high correlation with MODIS-LST and reanalysis-LST, outperforming other four existing gap-filling products; 3) CPMF-LST30 m achieves good accuracy, with Pearson's R of 0.86-0.96 (RMSE <3.40 K) against Landsat-LST, <inline-formula> <tex-math notation="LaTeX">{R} \,\, =0.66 </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">{P} \,\, \lt 0.01 </tex-math></inline-formula>) with airborne LST, and <inline-formula> <tex-math notation="LaTeX">{R} \,\, =0.97 </tex-math></inline-formula> (RMSE =4.25 K) with in situ LST, surpassing single-method downscaling; and 4) sensitivity analysis highlighted the importance of SEB-LST and CRLST in ML models, confirming the efficacy of the proposed physical model. CPMF provides a one-stop service for producing high-quality, long-term, all-weather LST data at a 30-m resolution.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3505933</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0155-6735</orcidid><orcidid>https://orcid.org/0000-0002-1570-1315</orcidid><orcidid>https://orcid.org/0000-0002-2255-2661</orcidid><orcidid>https://orcid.org/0000-0002-6315-4838</orcidid><orcidid>https://orcid.org/0000-0003-2907-2764</orcidid><orcidid>https://orcid.org/0000-0002-6234-8075</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-16 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3505933 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Coupling Couplings Data models Downscaling Energy balance gap filling Land surface Land surface temperature land surface temperature (LST) Learning algorithms Machine learning machine learning (ML) MODIS physical model Remote sensing Satellites Spatial resolution spatiotemporal fusion Spatiotemporal phenomena Surface energy Surface properties Surface temperature Weather |
title | CPMF: An Integrated Technology for Generating 30-m, All-Weather Land Surface Temperature by Coupling Physical Model, Machine Learning, and Spatiotemporal Fusion Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CPMF:%20An%20Integrated%20Technology%20for%20Generating%2030-m,%20All-Weather%20Land%20Surface%20Temperature%20by%20Coupling%20Physical%20Model,%20Machine%20Learning,%20and%20Spatiotemporal%20Fusion%20Model&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Gao,%20Jinhua&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3505933&rft_dat=%3Cproquest_RIE%3E3143028543%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143028543&rft_id=info:pmid/&rft_ieee_id=10767269&rfr_iscdi=true |