MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection

In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Hauptverfasser: Mu, Zhenhua, Wang, Yihan, Zhang, Yating, Song, Chuanming, Wang, Xianghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Mu, Zhenhua
Wang, Yihan
Zhang, Yating
Song, Chuanming
Wang, Xianghai
description In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .
doi_str_mv 10.1109/TGRS.2024.3496355
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3496355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10750240</ieee_id><sourcerecordid>10_1109_TGRS_2024_3496355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630-50c6da038c4f4e4354e38413a0ee29bd31ce7c2443d7b1cb5c790c543da2b9783</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPCQP7B18rW78ba02gotFu3Nw5JkZyGy7ZYkFfrv3dIePA0zvDeHR8gjgwljoJ8388-vCQcuJ0LqXCh1RUZMqTKDXMprMgKm84yXmt-Suxh_AJhUrBiR79V6Vr3Q1aFL_tcEbxLSdeitsb7z6UhnPqbg7SH5fkerQ-px5_oGA237QBfHPYa4R5eC6Wi167emGxRMw2Xg78lNa7qID5c5Jpu31810kS0_5u_Tapm5XECmwOWNAVE62UqUQkkUpWTCACLXthHMYeG4lKIpLHNWuUKDU8NquNVFKcaEnd-60McYsK33wW9NONYM6lOc-hSnPsWpL3EG5-nseET8xxdqoED8AVx3Yh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Mu, Zhenhua ; Wang, Yihan ; Zhang, Yating ; Song, Chuanming ; Wang, Xianghai</creator><creatorcontrib>Mu, Zhenhua ; Wang, Yihan ; Zhang, Yating ; Song, Chuanming ; Wang, Xianghai</creatorcontrib><description>In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3496355</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Anomaly detection (AD) ; autoencoder ; Detectors ; Feature extraction ; Gaussian distribution ; Histograms ; hyperspectral image (HSI) ; Image reconstruction ; Nonhomogeneous media ; Partitioning algorithms ; Probability ; probability density distribution ; Probability distribution ; skewed distribution ; unsupervised deep learning (DL)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7600-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10750240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10750240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Zhang, Yating</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><creatorcontrib>Wang, Xianghai</creatorcontrib><title>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .</description><subject>Anomaly detection</subject><subject>Anomaly detection (AD)</subject><subject>autoencoder</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>hyperspectral image (HSI)</subject><subject>Image reconstruction</subject><subject>Nonhomogeneous media</subject><subject>Partitioning algorithms</subject><subject>Probability</subject><subject>probability density distribution</subject><subject>Probability distribution</subject><subject>skewed distribution</subject><subject>unsupervised deep learning (DL)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPCQP7B18rW78ba02gotFu3Nw5JkZyGy7ZYkFfrv3dIePA0zvDeHR8gjgwljoJ8388-vCQcuJ0LqXCh1RUZMqTKDXMprMgKm84yXmt-Suxh_AJhUrBiR79V6Vr3Q1aFL_tcEbxLSdeitsb7z6UhnPqbg7SH5fkerQ-px5_oGA237QBfHPYa4R5eC6Wi167emGxRMw2Xg78lNa7qID5c5Jpu31810kS0_5u_Tapm5XECmwOWNAVE62UqUQkkUpWTCACLXthHMYeG4lKIpLHNWuUKDU8NquNVFKcaEnd-60McYsK33wW9NONYM6lOc-hSnPsWpL3EG5-nseET8xxdqoED8AVx3Yh0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mu, Zhenhua</creator><creator>Wang, Yihan</creator><creator>Zhang, Yating</creator><creator>Song, Chuanming</creator><creator>Wang, Xianghai</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></search><sort><creationdate>2024</creationdate><title>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</title><author>Mu, Zhenhua ; Wang, Yihan ; Zhang, Yating ; Song, Chuanming ; Wang, Xianghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630-50c6da038c4f4e4354e38413a0ee29bd31ce7c2443d7b1cb5c790c543da2b9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomaly detection</topic><topic>Anomaly detection (AD)</topic><topic>autoencoder</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>hyperspectral image (HSI)</topic><topic>Image reconstruction</topic><topic>Nonhomogeneous media</topic><topic>Partitioning algorithms</topic><topic>Probability</topic><topic>probability density distribution</topic><topic>Probability distribution</topic><topic>skewed distribution</topic><topic>unsupervised deep learning (DL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Zhang, Yating</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><creatorcontrib>Wang, Xianghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Zhenhua</au><au>Wang, Yihan</au><au>Zhang, Yating</au><au>Song, Chuanming</au><au>Wang, Xianghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3496355</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3496355
source IEEE Electronic Library (IEL)
subjects Anomaly detection
Anomaly detection (AD)
autoencoder
Detectors
Feature extraction
Gaussian distribution
Histograms
hyperspectral image (HSI)
Image reconstruction
Nonhomogeneous media
Partitioning algorithms
Probability
probability density distribution
Probability distribution
skewed distribution
unsupervised deep learning (DL)
title MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MPDA:%20Multivariate%20Probability%20Distribution%20Autoencoder%20for%20Hyperspectral%20Anomaly%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Mu,%20Zhenhua&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3496355&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3496355%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10750240&rfr_iscdi=true