MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection
In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effec...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Mu, Zhenhua Wang, Yihan Zhang, Yating Song, Chuanming Wang, Xianghai |
description | In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master . |
doi_str_mv | 10.1109/TGRS.2024.3496355 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3496355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10750240</ieee_id><sourcerecordid>10_1109_TGRS_2024_3496355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630-50c6da038c4f4e4354e38413a0ee29bd31ce7c2443d7b1cb5c790c543da2b9783</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPCQP7B18rW78ba02gotFu3Nw5JkZyGy7ZYkFfrv3dIePA0zvDeHR8gjgwljoJ8388-vCQcuJ0LqXCh1RUZMqTKDXMprMgKm84yXmt-Suxh_AJhUrBiR79V6Vr3Q1aFL_tcEbxLSdeitsb7z6UhnPqbg7SH5fkerQ-px5_oGA237QBfHPYa4R5eC6Wi167emGxRMw2Xg78lNa7qID5c5Jpu31810kS0_5u_Tapm5XECmwOWNAVE62UqUQkkUpWTCACLXthHMYeG4lKIpLHNWuUKDU8NquNVFKcaEnd-60McYsK33wW9NONYM6lOc-hSnPsWpL3EG5-nseET8xxdqoED8AVx3Yh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Mu, Zhenhua ; Wang, Yihan ; Zhang, Yating ; Song, Chuanming ; Wang, Xianghai</creator><creatorcontrib>Mu, Zhenhua ; Wang, Yihan ; Zhang, Yating ; Song, Chuanming ; Wang, Xianghai</creatorcontrib><description>In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3496355</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Anomaly detection (AD) ; autoencoder ; Detectors ; Feature extraction ; Gaussian distribution ; Histograms ; hyperspectral image (HSI) ; Image reconstruction ; Nonhomogeneous media ; Partitioning algorithms ; Probability ; probability density distribution ; Probability distribution ; skewed distribution ; unsupervised deep learning (DL)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7600-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10750240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10750240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Zhang, Yating</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><creatorcontrib>Wang, Xianghai</creatorcontrib><title>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .</description><subject>Anomaly detection</subject><subject>Anomaly detection (AD)</subject><subject>autoencoder</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>hyperspectral image (HSI)</subject><subject>Image reconstruction</subject><subject>Nonhomogeneous media</subject><subject>Partitioning algorithms</subject><subject>Probability</subject><subject>probability density distribution</subject><subject>Probability distribution</subject><subject>skewed distribution</subject><subject>unsupervised deep learning (DL)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPCQP7B18rW78ba02gotFu3Nw5JkZyGy7ZYkFfrv3dIePA0zvDeHR8gjgwljoJ8388-vCQcuJ0LqXCh1RUZMqTKDXMprMgKm84yXmt-Suxh_AJhUrBiR79V6Vr3Q1aFL_tcEbxLSdeitsb7z6UhnPqbg7SH5fkerQ-px5_oGA237QBfHPYa4R5eC6Wi167emGxRMw2Xg78lNa7qID5c5Jpu31810kS0_5u_Tapm5XECmwOWNAVE62UqUQkkUpWTCACLXthHMYeG4lKIpLHNWuUKDU8NquNVFKcaEnd-60McYsK33wW9NONYM6lOc-hSnPsWpL3EG5-nseET8xxdqoED8AVx3Yh0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mu, Zhenhua</creator><creator>Wang, Yihan</creator><creator>Zhang, Yating</creator><creator>Song, Chuanming</creator><creator>Wang, Xianghai</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></search><sort><creationdate>2024</creationdate><title>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</title><author>Mu, Zhenhua ; Wang, Yihan ; Zhang, Yating ; Song, Chuanming ; Wang, Xianghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630-50c6da038c4f4e4354e38413a0ee29bd31ce7c2443d7b1cb5c790c543da2b9783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomaly detection</topic><topic>Anomaly detection (AD)</topic><topic>autoencoder</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>hyperspectral image (HSI)</topic><topic>Image reconstruction</topic><topic>Nonhomogeneous media</topic><topic>Partitioning algorithms</topic><topic>Probability</topic><topic>probability density distribution</topic><topic>Probability distribution</topic><topic>skewed distribution</topic><topic>unsupervised deep learning (DL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Zhang, Yating</creatorcontrib><creatorcontrib>Song, Chuanming</creatorcontrib><creatorcontrib>Wang, Xianghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Zhenhua</au><au>Wang, Yihan</au><au>Zhang, Yating</au><au>Song, Chuanming</au><au>Wang, Xianghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In recent years, the significant success of deep learning (DL) in computer vision has contributed to its continuous development in the field of hyperspectral image (HSI) anomaly detection (AD). However, in practical applications, HSI-AD based on DL faces many challenges due to the inability to effectively acquire training samples and predict the types of anomaly targets. This makes it a challenging task, especially for AD in complex scenes. In this article, we propose an unsupervised DL framework for HSI-AD based on the multivariate probability distribution autoencoder (MPDA). First, to explore the distribution characteristics of high-dimensional data, we use the probability density histogram to statistically distribute the frequencies of each interval adaptively, dividing the HSI and obtaining an AD-guided image through the designed grid structure. Second, we propose an unsupervised multilayer autoencoder network based on energy-weighted skip connections. By coupling the detection-guided image in the network, we achieve reverse-guided module reconstruction, weakening the feature representation of anomalous in the reconstructed information and enhancing the separability of targets. Finally, we model the reconstructed error images using the multivariate skewed t-distribution based on data distribution characteristics to obtain the final AD map. Through the comparative experiments with other innovative AD algorithms on authentic HSI datasets captured in five different scenarios, the proposed algorithm demonstrates strong generalization and detection capabilities. The source code of the MPDA will be public at https://github.com/muzhenhuam/MPDA/tree/master .</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3496355</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7600-9939</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3496355 |
source | IEEE Electronic Library (IEL) |
subjects | Anomaly detection Anomaly detection (AD) autoencoder Detectors Feature extraction Gaussian distribution Histograms hyperspectral image (HSI) Image reconstruction Nonhomogeneous media Partitioning algorithms Probability probability density distribution Probability distribution skewed distribution unsupervised deep learning (DL) |
title | MPDA: Multivariate Probability Distribution Autoencoder for Hyperspectral Anomaly Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MPDA:%20Multivariate%20Probability%20Distribution%20Autoencoder%20for%20Hyperspectral%20Anomaly%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Mu,%20Zhenhua&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3496355&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3496355%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10750240&rfr_iscdi=true |