GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification

Efficient extraction of spectral sequences and geospatial information is crucial in hyperspectral image (HSI) classification. Recurrent neural networks (RNNs) and Transformers excel in capturing long-range spectral features, while convolutional neural networks (CNNs) excel in aggregating spatial inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Yang, Aitao, Li, Min, Ding, Yao, Fang, Leyuan, Cai, Yaoming, He, Yujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Yang, Aitao
Li, Min
Ding, Yao
Fang, Leyuan
Cai, Yaoming
He, Yujie
description Efficient extraction of spectral sequences and geospatial information is crucial in hyperspectral image (HSI) classification. Recurrent neural networks (RNNs) and Transformers excel in capturing long-range spectral features, while convolutional neural networks (CNNs) excel in aggregating spatial information through convolutional kernels. However, RNNs and Transformers suffer from low-computational efficiency, and CNNs have limitations in perceiving global contextual information. To address these issues, this article proposes GraphMamba-an efficient graph structure learning vision Mamba for HSI classification. Specifically, GraphMamba is a novel hyperspectral information processing paradigm that preserves spatial-spectral features by constructing spatial-spectral cubes and employs a linear spectral encoder to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module, which enhances computational efficiency, and the SpatialGCN module, designed for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing a global mask (GM) and introduces a parallel training and inference architecture to alleviate computational bottlenecks. Meanwhile, the SpatialGCN utilizes weighted multihop aggregation (WMA) for spatial encoding, emphasizing highly correlated spatial structural features. This approach enables flexible aggregation of contextual information while minimizing spatial noise interference. Notably, the encoding modules of the proposed GraphMamba architecture are both flexible and scalable, providing a novel approach for the joint mining of spatial-spectral information in hyperspectral images. Extensive experiments were conducted on three different scales of real HSI datasets. When compared with state-of-the-art classification methods, GraphMamba demonstrated superior performance. The core code will be released at https://github.com/ahappyyang/GraphMamba .
doi_str_mv 10.1109/TGRS.2024.3493101
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3493101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10746459</ieee_id><sourcerecordid>3128836006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-1cd6a2a248889d259097205e1c8eb0c28b75b93e8c0a7dea54b223d2601fc1003</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRsFZ_gOBiwHXqe5NJMuOulNoWKoKtbsNk8lJT2iTOJIv-e9OPhau3uOfeB4exR4QRIuiX9exzNRIg5CiUOkTAKzbAKFIBxFJeswGgjgOhtLhld95vAVBGmAwYzZxpft7NPjOvfFzxaVGUtqSq5aeAr1rX2bZzxJdkXFVWG_5d-rKu-KnDi9rx-aEh5xuyrTM7vtibDfHJznhf9lum7eF7dlOYnaeHyx2yr7fpejIPlh-zxWS8DKxA3QZo89gII6RSSuci0qATARGhVZSBFSpLokyHpCyYJCcTyUyIMBcxYGERIByy5_Nu4-rfjnybbuvOVf3LNEShVBgDxD2FZ8q62ntHRdq4cm_cIUVIjzbTo830aDO92Ow7T-dOSUT_-ETGMtLhH2ffcJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128836006</pqid></control><display><type>article</type><title>GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Aitao ; Li, Min ; Ding, Yao ; Fang, Leyuan ; Cai, Yaoming ; He, Yujie</creator><creatorcontrib>Yang, Aitao ; Li, Min ; Ding, Yao ; Fang, Leyuan ; Cai, Yaoming ; He, Yujie</creatorcontrib><description>Efficient extraction of spectral sequences and geospatial information is crucial in hyperspectral image (HSI) classification. Recurrent neural networks (RNNs) and Transformers excel in capturing long-range spectral features, while convolutional neural networks (CNNs) excel in aggregating spatial information through convolutional kernels. However, RNNs and Transformers suffer from low-computational efficiency, and CNNs have limitations in perceiving global contextual information. To address these issues, this article proposes GraphMamba-an efficient graph structure learning vision Mamba for HSI classification. Specifically, GraphMamba is a novel hyperspectral information processing paradigm that preserves spatial-spectral features by constructing spatial-spectral cubes and employs a linear spectral encoder to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module, which enhances computational efficiency, and the SpatialGCN module, designed for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing a global mask (GM) and introduces a parallel training and inference architecture to alleviate computational bottlenecks. Meanwhile, the SpatialGCN utilizes weighted multihop aggregation (WMA) for spatial encoding, emphasizing highly correlated spatial structural features. This approach enables flexible aggregation of contextual information while minimizing spatial noise interference. Notably, the encoding modules of the proposed GraphMamba architecture are both flexible and scalable, providing a novel approach for the joint mining of spatial-spectral information in hyperspectral images. Extensive experiments were conducted on three different scales of real HSI datasets. When compared with state-of-the-art classification methods, GraphMamba demonstrated superior performance. The core code will be released at https://github.com/ahappyyang/GraphMamba .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3493101</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aggregation ; Artificial neural networks ; Classification ; Clutter ; Coding ; Computational efficiency ; Computer applications ; Cubes ; Data mining ; Data processing ; Encoding ; Feature extraction ; Graph convolutional network (GCN) ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Information processing ; Kernel ; Learning ; mamba ; Modules ; Neural networks ; Recurrent neural networks ; remote sensing ; Semantics ; Spatial data ; Spatial discrimination learning ; state space model (SSM) ; Training ; Transformers ; Vectors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2351-4461 ; 0000-0002-2299-4945 ; 0000-0003-2040-2640 ; 0000-0002-3009-279X ; 0000-0003-2535-2371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10746459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10746459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Aitao</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Ding, Yao</creatorcontrib><creatorcontrib>Fang, Leyuan</creatorcontrib><creatorcontrib>Cai, Yaoming</creatorcontrib><creatorcontrib>He, Yujie</creatorcontrib><title>GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Efficient extraction of spectral sequences and geospatial information is crucial in hyperspectral image (HSI) classification. Recurrent neural networks (RNNs) and Transformers excel in capturing long-range spectral features, while convolutional neural networks (CNNs) excel in aggregating spatial information through convolutional kernels. However, RNNs and Transformers suffer from low-computational efficiency, and CNNs have limitations in perceiving global contextual information. To address these issues, this article proposes GraphMamba-an efficient graph structure learning vision Mamba for HSI classification. Specifically, GraphMamba is a novel hyperspectral information processing paradigm that preserves spatial-spectral features by constructing spatial-spectral cubes and employs a linear spectral encoder to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module, which enhances computational efficiency, and the SpatialGCN module, designed for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing a global mask (GM) and introduces a parallel training and inference architecture to alleviate computational bottlenecks. Meanwhile, the SpatialGCN utilizes weighted multihop aggregation (WMA) for spatial encoding, emphasizing highly correlated spatial structural features. This approach enables flexible aggregation of contextual information while minimizing spatial noise interference. Notably, the encoding modules of the proposed GraphMamba architecture are both flexible and scalable, providing a novel approach for the joint mining of spatial-spectral information in hyperspectral images. Extensive experiments were conducted on three different scales of real HSI datasets. When compared with state-of-the-art classification methods, GraphMamba demonstrated superior performance. The core code will be released at https://github.com/ahappyyang/GraphMamba .</description><subject>Aggregation</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Clutter</subject><subject>Coding</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Cubes</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Graph convolutional network (GCN)</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Information processing</subject><subject>Kernel</subject><subject>Learning</subject><subject>mamba</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>remote sensing</subject><subject>Semantics</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>state space model (SSM)</subject><subject>Training</subject><subject>Transformers</subject><subject>Vectors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRsFZ_gOBiwHXqe5NJMuOulNoWKoKtbsNk8lJT2iTOJIv-e9OPhau3uOfeB4exR4QRIuiX9exzNRIg5CiUOkTAKzbAKFIBxFJeswGgjgOhtLhld95vAVBGmAwYzZxpft7NPjOvfFzxaVGUtqSq5aeAr1rX2bZzxJdkXFVWG_5d-rKu-KnDi9rx-aEh5xuyrTM7vtibDfHJznhf9lum7eF7dlOYnaeHyx2yr7fpejIPlh-zxWS8DKxA3QZo89gII6RSSuci0qATARGhVZSBFSpLokyHpCyYJCcTyUyIMBcxYGERIByy5_Nu4-rfjnybbuvOVf3LNEShVBgDxD2FZ8q62ntHRdq4cm_cIUVIjzbTo830aDO92Ow7T-dOSUT_-ETGMtLhH2ffcJs</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Aitao</creator><creator>Li, Min</creator><creator>Ding, Yao</creator><creator>Fang, Leyuan</creator><creator>Cai, Yaoming</creator><creator>He, Yujie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2351-4461</orcidid><orcidid>https://orcid.org/0000-0002-2299-4945</orcidid><orcidid>https://orcid.org/0000-0003-2040-2640</orcidid><orcidid>https://orcid.org/0000-0002-3009-279X</orcidid><orcidid>https://orcid.org/0000-0003-2535-2371</orcidid></search><sort><creationdate>2024</creationdate><title>GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification</title><author>Yang, Aitao ; Li, Min ; Ding, Yao ; Fang, Leyuan ; Cai, Yaoming ; He, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-1cd6a2a248889d259097205e1c8eb0c28b75b93e8c0a7dea54b223d2601fc1003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregation</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Clutter</topic><topic>Coding</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Cubes</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Graph convolutional network (GCN)</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Information processing</topic><topic>Kernel</topic><topic>Learning</topic><topic>mamba</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>remote sensing</topic><topic>Semantics</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>state space model (SSM)</topic><topic>Training</topic><topic>Transformers</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Aitao</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Ding, Yao</creatorcontrib><creatorcontrib>Fang, Leyuan</creatorcontrib><creatorcontrib>Cai, Yaoming</creatorcontrib><creatorcontrib>He, Yujie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Aitao</au><au>Li, Min</au><au>Ding, Yao</au><au>Fang, Leyuan</au><au>Cai, Yaoming</au><au>He, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Efficient extraction of spectral sequences and geospatial information is crucial in hyperspectral image (HSI) classification. Recurrent neural networks (RNNs) and Transformers excel in capturing long-range spectral features, while convolutional neural networks (CNNs) excel in aggregating spatial information through convolutional kernels. However, RNNs and Transformers suffer from low-computational efficiency, and CNNs have limitations in perceiving global contextual information. To address these issues, this article proposes GraphMamba-an efficient graph structure learning vision Mamba for HSI classification. Specifically, GraphMamba is a novel hyperspectral information processing paradigm that preserves spatial-spectral features by constructing spatial-spectral cubes and employs a linear spectral encoder to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module, which enhances computational efficiency, and the SpatialGCN module, designed for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing a global mask (GM) and introduces a parallel training and inference architecture to alleviate computational bottlenecks. Meanwhile, the SpatialGCN utilizes weighted multihop aggregation (WMA) for spatial encoding, emphasizing highly correlated spatial structural features. This approach enables flexible aggregation of contextual information while minimizing spatial noise interference. Notably, the encoding modules of the proposed GraphMamba architecture are both flexible and scalable, providing a novel approach for the joint mining of spatial-spectral information in hyperspectral images. Extensive experiments were conducted on three different scales of real HSI datasets. When compared with state-of-the-art classification methods, GraphMamba demonstrated superior performance. The core code will be released at https://github.com/ahappyyang/GraphMamba .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3493101</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2351-4461</orcidid><orcidid>https://orcid.org/0000-0002-2299-4945</orcidid><orcidid>https://orcid.org/0000-0003-2040-2640</orcidid><orcidid>https://orcid.org/0000-0002-3009-279X</orcidid><orcidid>https://orcid.org/0000-0003-2535-2371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3493101
source IEEE Electronic Library (IEL)
subjects Aggregation
Artificial neural networks
Classification
Clutter
Coding
Computational efficiency
Computer applications
Cubes
Data mining
Data processing
Encoding
Feature extraction
Graph convolutional network (GCN)
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Information processing
Kernel
Learning
mamba
Modules
Neural networks
Recurrent neural networks
remote sensing
Semantics
Spatial data
Spatial discrimination learning
state space model (SSM)
Training
Transformers
Vectors
title GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GraphMamba:%20An%20Efficient%20Graph%20Structure%20Learning%20Vision%20Mamba%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Aitao&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3493101&rft_dat=%3Cproquest_RIE%3E3128836006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128836006&rft_id=info:pmid/&rft_ieee_id=10746459&rfr_iscdi=true