Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection

Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Hu, Qian, Zhang, Yan, Zhang, Ruixiang, Xu, Fang, Yang, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Hu, Qian
Zhang, Yan
Zhang, Ruixiang
Xu, Fang
Yang, Wen
description Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.
doi_str_mv 10.1109/TGRS.2024.3485682
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3485682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734348</ieee_id><sourcerecordid>3124825343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-e516efe376b7d1592937e4edcaae8ef3bd948d74e0d73420f337c92a8785afbc3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9nPb9YaoQEJCgnhuurtTXYJdbHcP8OstgYOndw7POzN5ELqnZEQpKZ7W09XHiBEmRlxomWt2gQZUSp2RXIhLNCC0yDOmC3aNbmLcEEKFpGqAli-wb32NX-HbHhr_9YwXYINPE577LjQ-NhWe2cMer9qyj52HGLFrAx5DaOwWL8sNVF2qdyma1t-iK2e3Ee7OOUSf72_rySxbLKfzyXiRVVTlXQaS5uCAq7xUNZUFK7gCAXVlLWhwvKwLoWslgNSKC0Yc56oqmNVKS-vKig_R42nvLrS_PcTObNo--HTScMqEZpILnih6oqrQxhjAmV1ofmzYG0rM0Zs5ejNHb-bsLXUeTp0GAP7x6Y-E8D89iWm6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124825343</pqid></control><display><type>article</type><title>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Qian ; Zhang, Yan ; Zhang, Ruixiang ; Xu, Fang ; Yang, Wen</creator><creatorcontrib>Hu, Qian ; Zhang, Yan ; Zhang, Ruixiang ; Xu, Fang ; Yang, Wen</creatorcontrib><description>Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3485682</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerial images ; Datasets ; Degradation ; Detectors ; Distillation ; Distilling ; Drone aircraft ; Feature extraction ; Haze ; hazy conditions ; Image contrast ; Image edge detection ; Image enhancement ; Image quality ; Image restoration ; knowledge distillation ; Location awareness ; Meteorology ; Object detection ; Object recognition ; Pattern recognition ; Remote sensing ; Robustness ; Robustness (mathematics)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-e516efe376b7d1592937e4edcaae8ef3bd948d74e0d73420f337c92a8785afbc3</cites><orcidid>0000-0003-0704-2484 ; 0000-0003-4260-7911 ; 0000-0003-4794-6082 ; 0000-0002-3263-8768 ; 0009-0005-7613-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10734348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10734348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhang, Ruixiang</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><title>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.</description><subject>Aerial images</subject><subject>Datasets</subject><subject>Degradation</subject><subject>Detectors</subject><subject>Distillation</subject><subject>Distilling</subject><subject>Drone aircraft</subject><subject>Feature extraction</subject><subject>Haze</subject><subject>hazy conditions</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>knowledge distillation</subject><subject>Location awareness</subject><subject>Meteorology</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9nPb9YaoQEJCgnhuurtTXYJdbHcP8OstgYOndw7POzN5ELqnZEQpKZ7W09XHiBEmRlxomWt2gQZUSp2RXIhLNCC0yDOmC3aNbmLcEEKFpGqAli-wb32NX-HbHhr_9YwXYINPE577LjQ-NhWe2cMer9qyj52HGLFrAx5DaOwWL8sNVF2qdyma1t-iK2e3Ee7OOUSf72_rySxbLKfzyXiRVVTlXQaS5uCAq7xUNZUFK7gCAXVlLWhwvKwLoWslgNSKC0Yc56oqmNVKS-vKig_R42nvLrS_PcTObNo--HTScMqEZpILnih6oqrQxhjAmV1ofmzYG0rM0Zs5ejNHb-bsLXUeTp0GAP7x6Y-E8D89iWm6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hu, Qian</creator><creator>Zhang, Yan</creator><creator>Zhang, Ruixiang</creator><creator>Xu, Fang</creator><creator>Yang, Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0704-2484</orcidid><orcidid>https://orcid.org/0000-0003-4260-7911</orcidid><orcidid>https://orcid.org/0000-0003-4794-6082</orcidid><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0009-0005-7613-988X</orcidid></search><sort><creationdate>2024</creationdate><title>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</title><author>Hu, Qian ; Zhang, Yan ; Zhang, Ruixiang ; Xu, Fang ; Yang, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-e516efe376b7d1592937e4edcaae8ef3bd948d74e0d73420f337c92a8785afbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial images</topic><topic>Datasets</topic><topic>Degradation</topic><topic>Detectors</topic><topic>Distillation</topic><topic>Distilling</topic><topic>Drone aircraft</topic><topic>Feature extraction</topic><topic>Haze</topic><topic>hazy conditions</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>knowledge distillation</topic><topic>Location awareness</topic><topic>Meteorology</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhang, Ruixiang</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Qian</au><au>Zhang, Yan</au><au>Zhang, Ruixiang</au><au>Xu, Fang</au><au>Yang, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3485682</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0704-2484</orcidid><orcidid>https://orcid.org/0000-0003-4260-7911</orcidid><orcidid>https://orcid.org/0000-0003-4794-6082</orcidid><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0009-0005-7613-988X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3485682
source IEEE Electronic Library (IEL)
subjects Aerial images
Datasets
Degradation
Detectors
Distillation
Distilling
Drone aircraft
Feature extraction
Haze
hazy conditions
Image contrast
Image edge detection
Image enhancement
Image quality
Image restoration
knowledge distillation
Location awareness
Meteorology
Object detection
Object recognition
Pattern recognition
Remote sensing
Robustness
Robustness (mathematics)
title Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Dehazing:%20Learning%20Intrinsic%20Hazy%20Robustness%20for%20Aerial%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hu,%20Qian&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3485682&rft_dat=%3Cproquest_RIE%3E3124825343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124825343&rft_id=info:pmid/&rft_ieee_id=10734348&rfr_iscdi=true