Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection
Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Hu, Qian Zhang, Yan Zhang, Ruixiang Xu, Fang Yang, Wen |
description | Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes. |
doi_str_mv | 10.1109/TGRS.2024.3485682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3485682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734348</ieee_id><sourcerecordid>3124825343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-e516efe376b7d1592937e4edcaae8ef3bd948d74e0d73420f337c92a8785afbc3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9nPb9YaoQEJCgnhuurtTXYJdbHcP8OstgYOndw7POzN5ELqnZEQpKZ7W09XHiBEmRlxomWt2gQZUSp2RXIhLNCC0yDOmC3aNbmLcEEKFpGqAli-wb32NX-HbHhr_9YwXYINPE577LjQ-NhWe2cMer9qyj52HGLFrAx5DaOwWL8sNVF2qdyma1t-iK2e3Ee7OOUSf72_rySxbLKfzyXiRVVTlXQaS5uCAq7xUNZUFK7gCAXVlLWhwvKwLoWslgNSKC0Yc56oqmNVKS-vKig_R42nvLrS_PcTObNo--HTScMqEZpILnih6oqrQxhjAmV1ofmzYG0rM0Zs5ejNHb-bsLXUeTp0GAP7x6Y-E8D89iWm6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124825343</pqid></control><display><type>article</type><title>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Qian ; Zhang, Yan ; Zhang, Ruixiang ; Xu, Fang ; Yang, Wen</creator><creatorcontrib>Hu, Qian ; Zhang, Yan ; Zhang, Ruixiang ; Xu, Fang ; Yang, Wen</creatorcontrib><description>Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3485682</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerial images ; Datasets ; Degradation ; Detectors ; Distillation ; Distilling ; Drone aircraft ; Feature extraction ; Haze ; hazy conditions ; Image contrast ; Image edge detection ; Image enhancement ; Image quality ; Image restoration ; knowledge distillation ; Location awareness ; Meteorology ; Object detection ; Object recognition ; Pattern recognition ; Remote sensing ; Robustness ; Robustness (mathematics)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-e516efe376b7d1592937e4edcaae8ef3bd948d74e0d73420f337c92a8785afbc3</cites><orcidid>0000-0003-0704-2484 ; 0000-0003-4260-7911 ; 0000-0003-4794-6082 ; 0000-0002-3263-8768 ; 0009-0005-7613-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10734348$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10734348$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhang, Ruixiang</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><title>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.</description><subject>Aerial images</subject><subject>Datasets</subject><subject>Degradation</subject><subject>Detectors</subject><subject>Distillation</subject><subject>Distilling</subject><subject>Drone aircraft</subject><subject>Feature extraction</subject><subject>Haze</subject><subject>hazy conditions</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>knowledge distillation</subject><subject>Location awareness</subject><subject>Meteorology</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9nPb9YaoQEJCgnhuurtTXYJdbHcP8OstgYOndw7POzN5ELqnZEQpKZ7W09XHiBEmRlxomWt2gQZUSp2RXIhLNCC0yDOmC3aNbmLcEEKFpGqAli-wb32NX-HbHhr_9YwXYINPE577LjQ-NhWe2cMer9qyj52HGLFrAx5DaOwWL8sNVF2qdyma1t-iK2e3Ee7OOUSf72_rySxbLKfzyXiRVVTlXQaS5uCAq7xUNZUFK7gCAXVlLWhwvKwLoWslgNSKC0Yc56oqmNVKS-vKig_R42nvLrS_PcTObNo--HTScMqEZpILnih6oqrQxhjAmV1ofmzYG0rM0Zs5ejNHb-bsLXUeTp0GAP7x6Y-E8D89iWm6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Hu, Qian</creator><creator>Zhang, Yan</creator><creator>Zhang, Ruixiang</creator><creator>Xu, Fang</creator><creator>Yang, Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0704-2484</orcidid><orcidid>https://orcid.org/0000-0003-4260-7911</orcidid><orcidid>https://orcid.org/0000-0003-4794-6082</orcidid><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0009-0005-7613-988X</orcidid></search><sort><creationdate>2024</creationdate><title>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</title><author>Hu, Qian ; Zhang, Yan ; Zhang, Ruixiang ; Xu, Fang ; Yang, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-e516efe376b7d1592937e4edcaae8ef3bd948d74e0d73420f337c92a8785afbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial images</topic><topic>Datasets</topic><topic>Degradation</topic><topic>Detectors</topic><topic>Distillation</topic><topic>Distilling</topic><topic>Drone aircraft</topic><topic>Feature extraction</topic><topic>Haze</topic><topic>hazy conditions</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>knowledge distillation</topic><topic>Location awareness</topic><topic>Meteorology</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zhang, Ruixiang</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Qian</au><au>Zhang, Yan</au><au>Zhang, Ruixiang</au><au>Xu, Fang</au><au>Yang, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Accurate object detection in aerial imagery is crucial across numerous applications. However, haze can significantly degrade the performance of normal detectors, presenting a substantial obstacle in real-world scenarios. Previous solutions often resort to image dehazing as a pre-processing step to enhance image quality for subsequent detection. Despite being logically intuitive, their performance is limited due to the inherent objective mismatch between low-level image restoration tasks and high-level object detection tasks. In this article, we present haze-robust aerial object detection (HRAOD) to directly enhance detection robustness under hazy conditions. HRAOD constructs a clean-to-hazy distillation framework, enabling the detector to "see through haze," without relying on the explicit image dehazing process. To address the challenge of extracting informative hazy features from blurry and low-contrast hazy images, we introduce a gradient-guided feature imitation method to emphasize the desired objects. Moreover, recognizing that different regions suffer from varying degradation degrees and pose distinct detection difficulties, we further propose a degradation-weighted response distillation method to mimic the normal predictions according to the degradation pattern adaptively. Due to the scarcity of hazy aerial data, we curate two remote sensing hazy aerial datasets, namely DOTA-Haze and SODA-A-Haze, and one drone hazy aerial dataset, DroneVehicle-Haze, for simulation. Extensive experimental results demonstrate the superiority of our method. Specifically, our HRAOD outperforms the state-of-the-art "dehaze + detect" method by 13.1 points in mAP on the DOTA-Haze dataset without incurring additional inference costs. HRAOD also performs favorably against other methods on real-world hazy scenes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3485682</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0704-2484</orcidid><orcidid>https://orcid.org/0000-0003-4260-7911</orcidid><orcidid>https://orcid.org/0000-0003-4794-6082</orcidid><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0009-0005-7613-988X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3485682 |
source | IEEE Electronic Library (IEL) |
subjects | Aerial images Datasets Degradation Detectors Distillation Distilling Drone aircraft Feature extraction Haze hazy conditions Image contrast Image edge detection Image enhancement Image quality Image restoration knowledge distillation Location awareness Meteorology Object detection Object recognition Pattern recognition Remote sensing Robustness Robustness (mathematics) |
title | Beyond Dehazing: Learning Intrinsic Hazy Robustness for Aerial Object Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Dehazing:%20Learning%20Intrinsic%20Hazy%20Robustness%20for%20Aerial%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hu,%20Qian&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3485682&rft_dat=%3Cproquest_RIE%3E3124825343%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124825343&rft_id=info:pmid/&rft_ieee_id=10734348&rfr_iscdi=true |