High-Resolution Tropical Cyclone Rainfall Detection From C-Band SAR Imagery With Deep Learning

This article introduces an innovative deep-learning approach for retrieving tropical cyclone (TC) rainfall information from C-band Sentinel-1 synthetic aperture radar (SAR) imagery. We collected 17 SAR images under TC conditions from 2016 to 2021 and matched them with synchronous observational Next...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Hauptverfasser: Mu, Shanshan, Li, Xiaofeng, Wang, Haoyu, Zheng, Gang, Perrie, William, Wang, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Mu, Shanshan
Li, Xiaofeng
Wang, Haoyu
Zheng, Gang
Perrie, William
Wang, Chong
description This article introduces an innovative deep-learning approach for retrieving tropical cyclone (TC) rainfall information from C-band Sentinel-1 synthetic aperture radar (SAR) imagery. We collected 17 SAR images under TC conditions from 2016 to 2021 and matched them with synchronous observational Next Generation Weather Radar (NEXRAD) Level-III data, forming a dataset of 302689 data pairs for model development. The model inputs include SAR-measured physical parameters in normalized radar cross section (NRCS), texture features represented by the gray-level co-occurrence matrix (GLCM), and statistical parameters of VV-polarized NRCS. A deep-learning-based TC rain rate retrieval (TC3R) model, combining a convolutional network and a fully connected (FC) network, was developed to retrieve quantitative TC rainfall information effectively. The test results demonstrate that the TC3R model can offer reasonable and stable quantitative rainfall estimation, particularly effectively detecting areas with medium-to-heavy rainfall events (2.5-40 mm/h) in SAR images where the NRCS is significantly affected by rain. Furthermore, to offer valuable insights into the performance of the TC3R model, we analyzed results across TC events of different intensities as case studies. Our results show high structural similarity (SSIM) in rainfall patterns between SAR and NEXRAD across all cases, consistently achieving SSIM values above 0.67. Moreover, in areas where SAR signals are notably affected by rainfall, the SSIM index even exceeds 0.80. Finally, our model's performance was evaluated by comparing its results with the independent global precipitation measurement (GPM) data, demonstrating effective rainfall prediction, particularly for the primary spiral rain band, in the two cases analyzed.
doi_str_mv 10.1109/TGRS.2024.3445280
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3445280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638083</ieee_id><sourcerecordid>10_1109_TGRS_2024_3445280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-b2e7febefafd6ca4b91139ae3ef9124100b1fd83774d6dbcd86be7ddba53232b3</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqXwAEgMfgEXX9tJnLEE-iNFQkqL2Ijs-KY1SpPKCUPfnpZ2YPqWc77hEPIIfALA0-f1vFhNBBdqIpWKhOZXZARRpBmPlbomIw5pzIROxS256_tvzkFFkIzI18JvtqzAvmt-Bt-1dB26va9MQ7ND1XQt0sL4tjZNQ19xwOqPmYVuRzP2YlpHV9OCLndmg-FAP_2wPWK4pzma0Pp2c09ujm6PD5cdk4_Z2zpbsPx9vsymOatA6YFZgUmNFmtTu7gyyqYAMjUosU5BKODcQu20TBLlYmcrp2OLiXPWRFJIYeWYwPm3Cl3fB6zLffA7Ew4l8PIUqDwFKk-Bykugo_N0djwi_uNjqbmW8hdX6GM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Resolution Tropical Cyclone Rainfall Detection From C-Band SAR Imagery With Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Mu, Shanshan ; Li, Xiaofeng ; Wang, Haoyu ; Zheng, Gang ; Perrie, William ; Wang, Chong</creator><creatorcontrib>Mu, Shanshan ; Li, Xiaofeng ; Wang, Haoyu ; Zheng, Gang ; Perrie, William ; Wang, Chong</creatorcontrib><description>This article introduces an innovative deep-learning approach for retrieving tropical cyclone (TC) rainfall information from C-band Sentinel-1 synthetic aperture radar (SAR) imagery. We collected 17 SAR images under TC conditions from 2016 to 2021 and matched them with synchronous observational Next Generation Weather Radar (NEXRAD) Level-III data, forming a dataset of 302689 data pairs for model development. The model inputs include SAR-measured physical parameters in normalized radar cross section (NRCS), texture features represented by the gray-level co-occurrence matrix (GLCM), and statistical parameters of VV-polarized NRCS. A deep-learning-based TC rain rate retrieval (TC3R) model, combining a convolutional network and a fully connected (FC) network, was developed to retrieve quantitative TC rainfall information effectively. The test results demonstrate that the TC3R model can offer reasonable and stable quantitative rainfall estimation, particularly effectively detecting areas with medium-to-heavy rainfall events (2.5-40 mm/h) in SAR images where the NRCS is significantly affected by rain. Furthermore, to offer valuable insights into the performance of the TC3R model, we analyzed results across TC events of different intensities as case studies. Our results show high structural similarity (SSIM) in rainfall patterns between SAR and NEXRAD across all cases, consistently achieving SSIM values above 0.67. Moreover, in areas where SAR signals are notably affected by rainfall, the SSIM index even exceeds 0.80. Finally, our model's performance was evaluated by comparing its results with the independent global precipitation measurement (GPM) data, demonstrating effective rainfall prediction, particularly for the primary spiral rain band, in the two cases analyzed.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3445280</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>C-band ; Deep learning ; Precipitation ; Radar imaging ; Radar polarimetry ; Rain ; rainfall ; Spaceborne radar ; Synthetic aperture radar ; synthetic aperture radar (SAR) imagery ; tropical cyclone (TC)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-b2e7febefafd6ca4b91139ae3ef9124100b1fd83774d6dbcd86be7ddba53232b3</cites><orcidid>0000-0001-7038-5119 ; 0000-0003-3182-8559 ; 0000-0002-8275-8450 ; 0000-0002-3500-6678 ; 0000-0002-3598-2791 ; 0000-0001-8507-7880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638083$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10638083$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Shanshan</creatorcontrib><creatorcontrib>Li, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Haoyu</creatorcontrib><creatorcontrib>Zheng, Gang</creatorcontrib><creatorcontrib>Perrie, William</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><title>High-Resolution Tropical Cyclone Rainfall Detection From C-Band SAR Imagery With Deep Learning</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This article introduces an innovative deep-learning approach for retrieving tropical cyclone (TC) rainfall information from C-band Sentinel-1 synthetic aperture radar (SAR) imagery. We collected 17 SAR images under TC conditions from 2016 to 2021 and matched them with synchronous observational Next Generation Weather Radar (NEXRAD) Level-III data, forming a dataset of 302689 data pairs for model development. The model inputs include SAR-measured physical parameters in normalized radar cross section (NRCS), texture features represented by the gray-level co-occurrence matrix (GLCM), and statistical parameters of VV-polarized NRCS. A deep-learning-based TC rain rate retrieval (TC3R) model, combining a convolutional network and a fully connected (FC) network, was developed to retrieve quantitative TC rainfall information effectively. The test results demonstrate that the TC3R model can offer reasonable and stable quantitative rainfall estimation, particularly effectively detecting areas with medium-to-heavy rainfall events (2.5-40 mm/h) in SAR images where the NRCS is significantly affected by rain. Furthermore, to offer valuable insights into the performance of the TC3R model, we analyzed results across TC events of different intensities as case studies. Our results show high structural similarity (SSIM) in rainfall patterns between SAR and NEXRAD across all cases, consistently achieving SSIM values above 0.67. Moreover, in areas where SAR signals are notably affected by rainfall, the SSIM index even exceeds 0.80. Finally, our model's performance was evaluated by comparing its results with the independent global precipitation measurement (GPM) data, demonstrating effective rainfall prediction, particularly for the primary spiral rain band, in the two cases analyzed.</description><subject>C-band</subject><subject>Deep learning</subject><subject>Precipitation</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Rain</subject><subject>rainfall</subject><subject>Spaceborne radar</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) imagery</subject><subject>tropical cyclone (TC)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EEqXwAEgMfgEXX9tJnLEE-iNFQkqL2Ijs-KY1SpPKCUPfnpZ2YPqWc77hEPIIfALA0-f1vFhNBBdqIpWKhOZXZARRpBmPlbomIw5pzIROxS256_tvzkFFkIzI18JvtqzAvmt-Bt-1dB26va9MQ7ND1XQt0sL4tjZNQ19xwOqPmYVuRzP2YlpHV9OCLndmg-FAP_2wPWK4pzma0Pp2c09ujm6PD5cdk4_Z2zpbsPx9vsymOatA6YFZgUmNFmtTu7gyyqYAMjUosU5BKODcQu20TBLlYmcrp2OLiXPWRFJIYeWYwPm3Cl3fB6zLffA7Ew4l8PIUqDwFKk-Bykugo_N0djwi_uNjqbmW8hdX6GM0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mu, Shanshan</creator><creator>Li, Xiaofeng</creator><creator>Wang, Haoyu</creator><creator>Zheng, Gang</creator><creator>Perrie, William</creator><creator>Wang, Chong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7038-5119</orcidid><orcidid>https://orcid.org/0000-0003-3182-8559</orcidid><orcidid>https://orcid.org/0000-0002-8275-8450</orcidid><orcidid>https://orcid.org/0000-0002-3500-6678</orcidid><orcidid>https://orcid.org/0000-0002-3598-2791</orcidid><orcidid>https://orcid.org/0000-0001-8507-7880</orcidid></search><sort><creationdate>2024</creationdate><title>High-Resolution Tropical Cyclone Rainfall Detection From C-Band SAR Imagery With Deep Learning</title><author>Mu, Shanshan ; Li, Xiaofeng ; Wang, Haoyu ; Zheng, Gang ; Perrie, William ; Wang, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-b2e7febefafd6ca4b91139ae3ef9124100b1fd83774d6dbcd86be7ddba53232b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C-band</topic><topic>Deep learning</topic><topic>Precipitation</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Rain</topic><topic>rainfall</topic><topic>Spaceborne radar</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) imagery</topic><topic>tropical cyclone (TC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Shanshan</creatorcontrib><creatorcontrib>Li, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Haoyu</creatorcontrib><creatorcontrib>Zheng, Gang</creatorcontrib><creatorcontrib>Perrie, William</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Shanshan</au><au>Li, Xiaofeng</au><au>Wang, Haoyu</au><au>Zheng, Gang</au><au>Perrie, William</au><au>Wang, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Resolution Tropical Cyclone Rainfall Detection From C-Band SAR Imagery With Deep Learning</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This article introduces an innovative deep-learning approach for retrieving tropical cyclone (TC) rainfall information from C-band Sentinel-1 synthetic aperture radar (SAR) imagery. We collected 17 SAR images under TC conditions from 2016 to 2021 and matched them with synchronous observational Next Generation Weather Radar (NEXRAD) Level-III data, forming a dataset of 302689 data pairs for model development. The model inputs include SAR-measured physical parameters in normalized radar cross section (NRCS), texture features represented by the gray-level co-occurrence matrix (GLCM), and statistical parameters of VV-polarized NRCS. A deep-learning-based TC rain rate retrieval (TC3R) model, combining a convolutional network and a fully connected (FC) network, was developed to retrieve quantitative TC rainfall information effectively. The test results demonstrate that the TC3R model can offer reasonable and stable quantitative rainfall estimation, particularly effectively detecting areas with medium-to-heavy rainfall events (2.5-40 mm/h) in SAR images where the NRCS is significantly affected by rain. Furthermore, to offer valuable insights into the performance of the TC3R model, we analyzed results across TC events of different intensities as case studies. Our results show high structural similarity (SSIM) in rainfall patterns between SAR and NEXRAD across all cases, consistently achieving SSIM values above 0.67. Moreover, in areas where SAR signals are notably affected by rainfall, the SSIM index even exceeds 0.80. Finally, our model's performance was evaluated by comparing its results with the independent global precipitation measurement (GPM) data, demonstrating effective rainfall prediction, particularly for the primary spiral rain band, in the two cases analyzed.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3445280</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7038-5119</orcidid><orcidid>https://orcid.org/0000-0003-3182-8559</orcidid><orcidid>https://orcid.org/0000-0002-8275-8450</orcidid><orcidid>https://orcid.org/0000-0002-3500-6678</orcidid><orcidid>https://orcid.org/0000-0002-3598-2791</orcidid><orcidid>https://orcid.org/0000-0001-8507-7880</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3445280
source IEEE Electronic Library (IEL)
subjects C-band
Deep learning
Precipitation
Radar imaging
Radar polarimetry
Rain
rainfall
Spaceborne radar
Synthetic aperture radar
synthetic aperture radar (SAR) imagery
tropical cyclone (TC)
title High-Resolution Tropical Cyclone Rainfall Detection From C-Band SAR Imagery With Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Resolution%20Tropical%20Cyclone%20Rainfall%20Detection%20From%20C-Band%20SAR%20Imagery%20With%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Mu,%20Shanshan&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3445280&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3445280%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10638083&rfr_iscdi=true