A Unified Cloud Detection Method for Suomi-NPP VIIRS Day and Night PAN Imagery

Cloud detection is a necessary step before the application of remote sensing images. However, the radiation intensity similarity between artificial lights and clouds is higher in nighttime remote sensing images than in daytime remote sensing images, making it difficult to distinguish artificial ligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Hauptverfasser: Li, Jun, Hu, Chengjie, Sheng, Qinghong, Wang, Bo, Ling, Xiao, Gao, Fan, Xu, Yunfei, Li, Zhiwei, Molinier, Matthieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Li, Jun
Hu, Chengjie
Sheng, Qinghong
Wang, Bo
Ling, Xiao
Gao, Fan
Xu, Yunfei
Li, Zhiwei
Molinier, Matthieu
description Cloud detection is a necessary step before the application of remote sensing images. However, the radiation intensity similarity between artificial lights and clouds is higher in nighttime remote sensing images than in daytime remote sensing images, making it difficult to distinguish artificial lights from clouds. This article proposes a deep learning method called multifeature fusion for cloud detection network (MFFCD-Net) to detect clouds in daytime and nighttime remote sensing images. A dilated residual upsampling module was designed for upsampling feature maps while enlarging the receptive field. A multiscale feature-extraction fusion module (MFEF) was designed to enhance the ability to distinguish regular textures of artificial lights from random textures of clouds. Moreover, an adaptive feature-fusion module (AFF) was designed to select and fuse the feature in the encoding stage and decoding stage, thus improving the cloud detection accuracy. To the best of our knowledge, this is the first time that a method is designed for cloud detection in both daytime and nighttime remote sensing images. The experimental results on Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) of the panchromatic (PAN) day/night band (DNB) images show that MFFCD-Net could obtain a better balance in commission and omission rates than baseline methods (92.3% versus 90.5% on the F1-score) in daytime remote sensing images. Although artificial lights introduce strong interference in nighttime remote sensing images, MFFCD-Net can better distinguish artificial lights from clouds than baseline methods (90.8% versus 88.4% on the F1-score). The results indicate that MFFCD-Net is promising for cloud detection both in daytime and nighttime remote sensing images. The source code and dataset are available at https://github.com/Neooolee/MFFCD-Net .
doi_str_mv 10.1109/TGRS.2024.3426649
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3426649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10595417</ieee_id><sourcerecordid>3084057752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-8f78723f1c4a6f968932013f5ed5fb406fcb15df300a1e91aecb2f47214fd14d3</originalsourceid><addsrcrecordid>eNpNkEtPAjEYRRujiYj-ABMXTVwP9utzuiSgSIIj4eG2KTMtDIEpdmYW_HshsHB1N-femxyEnoH0AIh-W4xm8x4llPcYp1JyfYM6IESaEMn5LeoQ0DKhqab36KGut4QAF6A6KOvjZVX60hV4sAttgYeucXlThgp_uWYTCuxDxPM27Mskm07xz3g8m-OhPWJbFTgr15sGT_sZHu_t2sXjI7rzdle7p2t20fLjfTH4TCbfo_GgP0lyULJJUq9SRZmHnFvptUw1owSYF64QfsWJ9PkKROEZIRacBuvyFfVcUeC-AF6wLnq97B5i-G1d3ZhtaGN1ujSMpJwIpQQ9UXCh8hjqOjpvDrHc23g0QMxZmzlrM2dt5qrt1Hm5dErn3D9eaMFBsT8HNWaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084057752</pqid></control><display><type>article</type><title>A Unified Cloud Detection Method for Suomi-NPP VIIRS Day and Night PAN Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jun ; Hu, Chengjie ; Sheng, Qinghong ; Wang, Bo ; Ling, Xiao ; Gao, Fan ; Xu, Yunfei ; Li, Zhiwei ; Molinier, Matthieu</creator><creatorcontrib>Li, Jun ; Hu, Chengjie ; Sheng, Qinghong ; Wang, Bo ; Ling, Xiao ; Gao, Fan ; Xu, Yunfei ; Li, Zhiwei ; Molinier, Matthieu</creatorcontrib><description>Cloud detection is a necessary step before the application of remote sensing images. However, the radiation intensity similarity between artificial lights and clouds is higher in nighttime remote sensing images than in daytime remote sensing images, making it difficult to distinguish artificial lights from clouds. This article proposes a deep learning method called multifeature fusion for cloud detection network (MFFCD-Net) to detect clouds in daytime and nighttime remote sensing images. A dilated residual upsampling module was designed for upsampling feature maps while enlarging the receptive field. A multiscale feature-extraction fusion module (MFEF) was designed to enhance the ability to distinguish regular textures of artificial lights from random textures of clouds. Moreover, an adaptive feature-fusion module (AFF) was designed to select and fuse the feature in the encoding stage and decoding stage, thus improving the cloud detection accuracy. To the best of our knowledge, this is the first time that a method is designed for cloud detection in both daytime and nighttime remote sensing images. The experimental results on Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) of the panchromatic (PAN) day/night band (DNB) images show that MFFCD-Net could obtain a better balance in commission and omission rates than baseline methods (92.3% versus 90.5% on the F1-score) in daytime remote sensing images. Although artificial lights introduce strong interference in nighttime remote sensing images, MFFCD-Net can better distinguish artificial lights from clouds than baseline methods (90.8% versus 88.4% on the F1-score). The results indicate that MFFCD-Net is promising for cloud detection both in daytime and nighttime remote sensing images. The source code and dataset are available at https://github.com/Neooolee/MFFCD-Net .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3426649</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive feature fusion ; Artificial light ; Brain mapping ; Cloud computing ; cloud detection ; Clouds ; Daytime ; daytime and nighttime remote sensing ; Decoding ; Deep learning ; Feature extraction ; Feature maps ; Image enhancement ; Imaging radiometers ; Infrared imagery ; Infrared imaging ; Infrared radiometers ; Modules ; multiscale feature-extraction fusion (MFEF) ; Night ; Night-time ; Nighttime ; Radiant flux density ; Radiometers ; Radiometry ; Receptive field ; Reflectivity ; Remote sensing ; Satellite broadcasting ; Source code</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-8f78723f1c4a6f968932013f5ed5fb406fcb15df300a1e91aecb2f47214fd14d3</cites><orcidid>0000-0001-5890-0691 ; 0000-0002-7913-2625 ; 0000-0003-0941-8713 ; 0000-0002-2656-001X ; 0000-0003-4350-8974 ; 0000-0001-5635-8499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10595417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10595417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Hu, Chengjie</creatorcontrib><creatorcontrib>Sheng, Qinghong</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Ling, Xiao</creatorcontrib><creatorcontrib>Gao, Fan</creatorcontrib><creatorcontrib>Xu, Yunfei</creatorcontrib><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>Molinier, Matthieu</creatorcontrib><title>A Unified Cloud Detection Method for Suomi-NPP VIIRS Day and Night PAN Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Cloud detection is a necessary step before the application of remote sensing images. However, the radiation intensity similarity between artificial lights and clouds is higher in nighttime remote sensing images than in daytime remote sensing images, making it difficult to distinguish artificial lights from clouds. This article proposes a deep learning method called multifeature fusion for cloud detection network (MFFCD-Net) to detect clouds in daytime and nighttime remote sensing images. A dilated residual upsampling module was designed for upsampling feature maps while enlarging the receptive field. A multiscale feature-extraction fusion module (MFEF) was designed to enhance the ability to distinguish regular textures of artificial lights from random textures of clouds. Moreover, an adaptive feature-fusion module (AFF) was designed to select and fuse the feature in the encoding stage and decoding stage, thus improving the cloud detection accuracy. To the best of our knowledge, this is the first time that a method is designed for cloud detection in both daytime and nighttime remote sensing images. The experimental results on Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) of the panchromatic (PAN) day/night band (DNB) images show that MFFCD-Net could obtain a better balance in commission and omission rates than baseline methods (92.3% versus 90.5% on the F1-score) in daytime remote sensing images. Although artificial lights introduce strong interference in nighttime remote sensing images, MFFCD-Net can better distinguish artificial lights from clouds than baseline methods (90.8% versus 88.4% on the F1-score). The results indicate that MFFCD-Net is promising for cloud detection both in daytime and nighttime remote sensing images. The source code and dataset are available at https://github.com/Neooolee/MFFCD-Net .</description><subject>Adaptive feature fusion</subject><subject>Artificial light</subject><subject>Brain mapping</subject><subject>Cloud computing</subject><subject>cloud detection</subject><subject>Clouds</subject><subject>Daytime</subject><subject>daytime and nighttime remote sensing</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Image enhancement</subject><subject>Imaging radiometers</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared radiometers</subject><subject>Modules</subject><subject>multiscale feature-extraction fusion (MFEF)</subject><subject>Night</subject><subject>Night-time</subject><subject>Nighttime</subject><subject>Radiant flux density</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Receptive field</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Satellite broadcasting</subject><subject>Source code</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEYRRujiYj-ABMXTVwP9utzuiSgSIIj4eG2KTMtDIEpdmYW_HshsHB1N-femxyEnoH0AIh-W4xm8x4llPcYp1JyfYM6IESaEMn5LeoQ0DKhqab36KGut4QAF6A6KOvjZVX60hV4sAttgYeucXlThgp_uWYTCuxDxPM27Mskm07xz3g8m-OhPWJbFTgr15sGT_sZHu_t2sXjI7rzdle7p2t20fLjfTH4TCbfo_GgP0lyULJJUq9SRZmHnFvptUw1owSYF64QfsWJ9PkKROEZIRacBuvyFfVcUeC-AF6wLnq97B5i-G1d3ZhtaGN1ujSMpJwIpQQ9UXCh8hjqOjpvDrHc23g0QMxZmzlrM2dt5qrt1Hm5dErn3D9eaMFBsT8HNWaE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Jun</creator><creator>Hu, Chengjie</creator><creator>Sheng, Qinghong</creator><creator>Wang, Bo</creator><creator>Ling, Xiao</creator><creator>Gao, Fan</creator><creator>Xu, Yunfei</creator><creator>Li, Zhiwei</creator><creator>Molinier, Matthieu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5890-0691</orcidid><orcidid>https://orcid.org/0000-0002-7913-2625</orcidid><orcidid>https://orcid.org/0000-0003-0941-8713</orcidid><orcidid>https://orcid.org/0000-0002-2656-001X</orcidid><orcidid>https://orcid.org/0000-0003-4350-8974</orcidid><orcidid>https://orcid.org/0000-0001-5635-8499</orcidid></search><sort><creationdate>2024</creationdate><title>A Unified Cloud Detection Method for Suomi-NPP VIIRS Day and Night PAN Imagery</title><author>Li, Jun ; Hu, Chengjie ; Sheng, Qinghong ; Wang, Bo ; Ling, Xiao ; Gao, Fan ; Xu, Yunfei ; Li, Zhiwei ; Molinier, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-8f78723f1c4a6f968932013f5ed5fb406fcb15df300a1e91aecb2f47214fd14d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive feature fusion</topic><topic>Artificial light</topic><topic>Brain mapping</topic><topic>Cloud computing</topic><topic>cloud detection</topic><topic>Clouds</topic><topic>Daytime</topic><topic>daytime and nighttime remote sensing</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Image enhancement</topic><topic>Imaging radiometers</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared radiometers</topic><topic>Modules</topic><topic>multiscale feature-extraction fusion (MFEF)</topic><topic>Night</topic><topic>Night-time</topic><topic>Nighttime</topic><topic>Radiant flux density</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Receptive field</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Satellite broadcasting</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Hu, Chengjie</creatorcontrib><creatorcontrib>Sheng, Qinghong</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Ling, Xiao</creatorcontrib><creatorcontrib>Gao, Fan</creatorcontrib><creatorcontrib>Xu, Yunfei</creatorcontrib><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>Molinier, Matthieu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jun</au><au>Hu, Chengjie</au><au>Sheng, Qinghong</au><au>Wang, Bo</au><au>Ling, Xiao</au><au>Gao, Fan</au><au>Xu, Yunfei</au><au>Li, Zhiwei</au><au>Molinier, Matthieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Cloud Detection Method for Suomi-NPP VIIRS Day and Night PAN Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Cloud detection is a necessary step before the application of remote sensing images. However, the radiation intensity similarity between artificial lights and clouds is higher in nighttime remote sensing images than in daytime remote sensing images, making it difficult to distinguish artificial lights from clouds. This article proposes a deep learning method called multifeature fusion for cloud detection network (MFFCD-Net) to detect clouds in daytime and nighttime remote sensing images. A dilated residual upsampling module was designed for upsampling feature maps while enlarging the receptive field. A multiscale feature-extraction fusion module (MFEF) was designed to enhance the ability to distinguish regular textures of artificial lights from random textures of clouds. Moreover, an adaptive feature-fusion module (AFF) was designed to select and fuse the feature in the encoding stage and decoding stage, thus improving the cloud detection accuracy. To the best of our knowledge, this is the first time that a method is designed for cloud detection in both daytime and nighttime remote sensing images. The experimental results on Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) of the panchromatic (PAN) day/night band (DNB) images show that MFFCD-Net could obtain a better balance in commission and omission rates than baseline methods (92.3% versus 90.5% on the F1-score) in daytime remote sensing images. Although artificial lights introduce strong interference in nighttime remote sensing images, MFFCD-Net can better distinguish artificial lights from clouds than baseline methods (90.8% versus 88.4% on the F1-score). The results indicate that MFFCD-Net is promising for cloud detection both in daytime and nighttime remote sensing images. The source code and dataset are available at https://github.com/Neooolee/MFFCD-Net .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3426649</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5890-0691</orcidid><orcidid>https://orcid.org/0000-0002-7913-2625</orcidid><orcidid>https://orcid.org/0000-0003-0941-8713</orcidid><orcidid>https://orcid.org/0000-0002-2656-001X</orcidid><orcidid>https://orcid.org/0000-0003-4350-8974</orcidid><orcidid>https://orcid.org/0000-0001-5635-8499</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3426649
source IEEE Electronic Library (IEL)
subjects Adaptive feature fusion
Artificial light
Brain mapping
Cloud computing
cloud detection
Clouds
Daytime
daytime and nighttime remote sensing
Decoding
Deep learning
Feature extraction
Feature maps
Image enhancement
Imaging radiometers
Infrared imagery
Infrared imaging
Infrared radiometers
Modules
multiscale feature-extraction fusion (MFEF)
Night
Night-time
Nighttime
Radiant flux density
Radiometers
Radiometry
Receptive field
Reflectivity
Remote sensing
Satellite broadcasting
Source code
title A Unified Cloud Detection Method for Suomi-NPP VIIRS Day and Night PAN Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Cloud%20Detection%20Method%20for%20Suomi-NPP%20VIIRS%20Day%20and%20Night%20PAN%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Jun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3426649&rft_dat=%3Cproquest_RIE%3E3084057752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084057752&rft_id=info:pmid/&rft_ieee_id=10595417&rfr_iscdi=true