Hyperspectral Image Reconstruction of SD-CASSI Based on Nonlocal Low-Rank Tensor Prior

In single disperser coded aperture snapshot spectral imaging (SD-CASSI) systems, many methods have been developed to reconstruct hyperspectral images (HSIs) from compressed measurements. Among these, deep learning (DL)-based methods have stood out, relying on powerful DL networks. However, the solid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Hauptverfasser: Yin, Xiaorui, Su, Lijuan, Chen, Xin, Liu, Hejian, Yan, Qiangqiang, Yuan, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Yin, Xiaorui
Su, Lijuan
Chen, Xin
Liu, Hejian
Yan, Qiangqiang
Yuan, Yan
description In single disperser coded aperture snapshot spectral imaging (SD-CASSI) systems, many methods have been developed to reconstruct hyperspectral images (HSIs) from compressed measurements. Among these, deep learning (DL)-based methods have stood out, relying on powerful DL networks. However, the solidified structure of DL-based methods limits their adaptability. Moreover, they are often based on a model that neglects the dispersion process and instead emphasizes the encoding-compression process. Furthermore, research on optimization-based methods designed especially for SD-CASSI is lacking. In this article, we propose a comprehensive two-step projection imaging model for SD-CASSI that includes both spectral shearing projection and encoding-compression projection. Based on this model, we derive a tensor-based optimization framework that incorporates with the nonlocal low-rank tensor (NLRT) prior. In particular, NLRT extracts inherent spatial structural information from the measurements and employs it to guide the clustering of spatial-spectral similar HSI blocks. A CANDECOMP/PARAFAC (CP) low-rank regularizer is introduced to constrain the low-rank property of HSI block clusters. After that, we develop a solution framework based on the alternating direction method of multiplier (ADMM) approach. Comprehensive experiments demonstrate that our NLRT method outperforms state-of-the-art methods in terms of flexibility and performance. The source code and data of this article are publicly available at https://github.com/sdnjyxr/NLRT .
doi_str_mv 10.1109/TGRS.2024.3398299
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3398299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10522649</ieee_id><sourcerecordid>3056005670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-38233a2786c1ddda4c23d046f382f6faa9b5754b2906942adb8bdb83507a60323</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILgIuE7N_0yWtWpbKCqd6jZkMhmZ2k7GZIr07U1pFy4OF-495x74ALgleEQIVg-r6bIYUUz5iDGVU6XOwIAIkSMsOT8HA0yURDRX9BJcxbjGmHBBsgH4nO07F2LnbB_MBs635svBpbO-jX3Y2b7xLfQ1LJ7QZFwUc_hooqtgWr76duNtiiz8L1qa9huuXBt9gO-h8eEaXNRmE93NaQ7Bx8vzajJDi7fpfDJeIEu57BHLKWOGZrm0pKoqwy1lFeayToda1saoUmSCl1RhqTg1VZmXSUzgzEjMKBuC--PfLvifnYu9XvtdaFOlZlhInJTh5CJHlw0-xuBq3YVma8JeE6wP-PQBnz7g0yd8KXN3zDTOuX9-Qankiv0BR11qZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056005670</pqid></control><display><type>article</type><title>Hyperspectral Image Reconstruction of SD-CASSI Based on Nonlocal Low-Rank Tensor Prior</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Xiaorui ; Su, Lijuan ; Chen, Xin ; Liu, Hejian ; Yan, Qiangqiang ; Yuan, Yan</creator><creatorcontrib>Yin, Xiaorui ; Su, Lijuan ; Chen, Xin ; Liu, Hejian ; Yan, Qiangqiang ; Yuan, Yan</creatorcontrib><description>In single disperser coded aperture snapshot spectral imaging (SD-CASSI) systems, many methods have been developed to reconstruct hyperspectral images (HSIs) from compressed measurements. Among these, deep learning (DL)-based methods have stood out, relying on powerful DL networks. However, the solidified structure of DL-based methods limits their adaptability. Moreover, they are often based on a model that neglects the dispersion process and instead emphasizes the encoding-compression process. Furthermore, research on optimization-based methods designed especially for SD-CASSI is lacking. In this article, we propose a comprehensive two-step projection imaging model for SD-CASSI that includes both spectral shearing projection and encoding-compression projection. Based on this model, we derive a tensor-based optimization framework that incorporates with the nonlocal low-rank tensor (NLRT) prior. In particular, NLRT extracts inherent spatial structural information from the measurements and employs it to guide the clustering of spatial-spectral similar HSI blocks. A CANDECOMP/PARAFAC (CP) low-rank regularizer is introduced to constrain the low-rank property of HSI block clusters. After that, we develop a solution framework based on the alternating direction method of multiplier (ADMM) approach. Comprehensive experiments demonstrate that our NLRT method outperforms state-of-the-art methods in terms of flexibility and performance. The source code and data of this article are publicly available at https://github.com/sdnjyxr/NLRT .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3398299</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptability ; Clustering ; Coding ; Compression ; Deep learning ; Hyperspectral images (HSIs) ; Hyperspectral imaging ; Image coding ; Image processing ; Image reconstruction ; Image restoration ; Imaging ; nonlocal low-rank tensor (NLRT) ; Optimization ; Shearing ; single disperser coded aperture snapshot spectral imaging (SD-CASSI) ; Source code ; Tensors ; Three-dimensional displays ; two-step projection model</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-38233a2786c1ddda4c23d046f382f6faa9b5754b2906942adb8bdb83507a60323</cites><orcidid>0009-0009-3399-0796 ; 0009-0008-9153-3959 ; 0000-0003-2653-7175 ; 0000-0002-6575-4407 ; 0009-0003-6518-0815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10522649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10522649$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Xiaorui</creatorcontrib><creatorcontrib>Su, Lijuan</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Liu, Hejian</creatorcontrib><creatorcontrib>Yan, Qiangqiang</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><title>Hyperspectral Image Reconstruction of SD-CASSI Based on Nonlocal Low-Rank Tensor Prior</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In single disperser coded aperture snapshot spectral imaging (SD-CASSI) systems, many methods have been developed to reconstruct hyperspectral images (HSIs) from compressed measurements. Among these, deep learning (DL)-based methods have stood out, relying on powerful DL networks. However, the solidified structure of DL-based methods limits their adaptability. Moreover, they are often based on a model that neglects the dispersion process and instead emphasizes the encoding-compression process. Furthermore, research on optimization-based methods designed especially for SD-CASSI is lacking. In this article, we propose a comprehensive two-step projection imaging model for SD-CASSI that includes both spectral shearing projection and encoding-compression projection. Based on this model, we derive a tensor-based optimization framework that incorporates with the nonlocal low-rank tensor (NLRT) prior. In particular, NLRT extracts inherent spatial structural information from the measurements and employs it to guide the clustering of spatial-spectral similar HSI blocks. A CANDECOMP/PARAFAC (CP) low-rank regularizer is introduced to constrain the low-rank property of HSI block clusters. After that, we develop a solution framework based on the alternating direction method of multiplier (ADMM) approach. Comprehensive experiments demonstrate that our NLRT method outperforms state-of-the-art methods in terms of flexibility and performance. The source code and data of this article are publicly available at https://github.com/sdnjyxr/NLRT .</description><subject>Adaptability</subject><subject>Clustering</subject><subject>Coding</subject><subject>Compression</subject><subject>Deep learning</subject><subject>Hyperspectral images (HSIs)</subject><subject>Hyperspectral imaging</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>nonlocal low-rank tensor (NLRT)</subject><subject>Optimization</subject><subject>Shearing</subject><subject>single disperser coded aperture snapshot spectral imaging (SD-CASSI)</subject><subject>Source code</subject><subject>Tensors</subject><subject>Three-dimensional displays</subject><subject>two-step projection model</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILgIuE7N_0yWtWpbKCqd6jZkMhmZ2k7GZIr07U1pFy4OF-495x74ALgleEQIVg-r6bIYUUz5iDGVU6XOwIAIkSMsOT8HA0yURDRX9BJcxbjGmHBBsgH4nO07F2LnbB_MBs635svBpbO-jX3Y2b7xLfQ1LJ7QZFwUc_hooqtgWr76duNtiiz8L1qa9huuXBt9gO-h8eEaXNRmE93NaQ7Bx8vzajJDi7fpfDJeIEu57BHLKWOGZrm0pKoqwy1lFeayToda1saoUmSCl1RhqTg1VZmXSUzgzEjMKBuC--PfLvifnYu9XvtdaFOlZlhInJTh5CJHlw0-xuBq3YVma8JeE6wP-PQBnz7g0yd8KXN3zDTOuX9-Qankiv0BR11qZQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yin, Xiaorui</creator><creator>Su, Lijuan</creator><creator>Chen, Xin</creator><creator>Liu, Hejian</creator><creator>Yan, Qiangqiang</creator><creator>Yuan, Yan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-3399-0796</orcidid><orcidid>https://orcid.org/0009-0008-9153-3959</orcidid><orcidid>https://orcid.org/0000-0003-2653-7175</orcidid><orcidid>https://orcid.org/0000-0002-6575-4407</orcidid><orcidid>https://orcid.org/0009-0003-6518-0815</orcidid></search><sort><creationdate>2024</creationdate><title>Hyperspectral Image Reconstruction of SD-CASSI Based on Nonlocal Low-Rank Tensor Prior</title><author>Yin, Xiaorui ; Su, Lijuan ; Chen, Xin ; Liu, Hejian ; Yan, Qiangqiang ; Yuan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-38233a2786c1ddda4c23d046f382f6faa9b5754b2906942adb8bdb83507a60323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Clustering</topic><topic>Coding</topic><topic>Compression</topic><topic>Deep learning</topic><topic>Hyperspectral images (HSIs)</topic><topic>Hyperspectral imaging</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>nonlocal low-rank tensor (NLRT)</topic><topic>Optimization</topic><topic>Shearing</topic><topic>single disperser coded aperture snapshot spectral imaging (SD-CASSI)</topic><topic>Source code</topic><topic>Tensors</topic><topic>Three-dimensional displays</topic><topic>two-step projection model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Xiaorui</creatorcontrib><creatorcontrib>Su, Lijuan</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Liu, Hejian</creatorcontrib><creatorcontrib>Yan, Qiangqiang</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Xiaorui</au><au>Su, Lijuan</au><au>Chen, Xin</au><au>Liu, Hejian</au><au>Yan, Qiangqiang</au><au>Yuan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Image Reconstruction of SD-CASSI Based on Nonlocal Low-Rank Tensor Prior</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In single disperser coded aperture snapshot spectral imaging (SD-CASSI) systems, many methods have been developed to reconstruct hyperspectral images (HSIs) from compressed measurements. Among these, deep learning (DL)-based methods have stood out, relying on powerful DL networks. However, the solidified structure of DL-based methods limits their adaptability. Moreover, they are often based on a model that neglects the dispersion process and instead emphasizes the encoding-compression process. Furthermore, research on optimization-based methods designed especially for SD-CASSI is lacking. In this article, we propose a comprehensive two-step projection imaging model for SD-CASSI that includes both spectral shearing projection and encoding-compression projection. Based on this model, we derive a tensor-based optimization framework that incorporates with the nonlocal low-rank tensor (NLRT) prior. In particular, NLRT extracts inherent spatial structural information from the measurements and employs it to guide the clustering of spatial-spectral similar HSI blocks. A CANDECOMP/PARAFAC (CP) low-rank regularizer is introduced to constrain the low-rank property of HSI block clusters. After that, we develop a solution framework based on the alternating direction method of multiplier (ADMM) approach. Comprehensive experiments demonstrate that our NLRT method outperforms state-of-the-art methods in terms of flexibility and performance. The source code and data of this article are publicly available at https://github.com/sdnjyxr/NLRT .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3398299</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0009-3399-0796</orcidid><orcidid>https://orcid.org/0009-0008-9153-3959</orcidid><orcidid>https://orcid.org/0000-0003-2653-7175</orcidid><orcidid>https://orcid.org/0000-0002-6575-4407</orcidid><orcidid>https://orcid.org/0009-0003-6518-0815</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3398299
source IEEE Electronic Library (IEL)
subjects Adaptability
Clustering
Coding
Compression
Deep learning
Hyperspectral images (HSIs)
Hyperspectral imaging
Image coding
Image processing
Image reconstruction
Image restoration
Imaging
nonlocal low-rank tensor (NLRT)
Optimization
Shearing
single disperser coded aperture snapshot spectral imaging (SD-CASSI)
Source code
Tensors
Three-dimensional displays
two-step projection model
title Hyperspectral Image Reconstruction of SD-CASSI Based on Nonlocal Low-Rank Tensor Prior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Image%20Reconstruction%20of%20SD-CASSI%20Based%20on%20Nonlocal%20Low-Rank%20Tensor%20Prior&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yin,%20Xiaorui&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3398299&rft_dat=%3Cproquest_RIE%3E3056005670%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056005670&rft_id=info:pmid/&rft_ieee_id=10522649&rfr_iscdi=true