CAS-Net: Comparison-Based Attention Siamese Network for Change Detection With an Open High-Resolution UAV Image Dataset
Change detection (CD) is a process of extracting changes on the Earth's surface from bitemporal images. Current CD methods that use high-resolution remote sensing images require extensive computational resources and are vulnerable to the presence of irrelevant noises in the images. In addressin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-17 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Zhai, Yikui Li, Wenba Xian, Tingfeng Jia, Xudong Zhang, Hongsheng Tan, Zijun Zhou, Jianhong Zeng, Junying Philip Chen, C. L. |
description | Change detection (CD) is a process of extracting changes on the Earth's surface from bitemporal images. Current CD methods that use high-resolution remote sensing images require extensive computational resources and are vulnerable to the presence of irrelevant noises in the images. In addressing these challenges, a comparison-based attention Siamese network (CAS-Net) is proposed. The network utilizes contrastive attention modules (CAMs) for feature fusion and employs a classifier to determine similarities and differences of bitemporal image patches. It simplifies pixel-level CDs by comparing image patches. As such, the influences of image background noises on change predictions are reduced. Along with the CAS-Net, an unmanned aerial vehicle (UAV) similarity detection (UAV-SD) dataset is built using high-resolution remote sensing images. This dataset, serving as a benchmark for CD, comprises 10000 pairs of UAV images with a size of 256 \times 256 . Experiments of the CAS-Net on the UAV-SD dataset demonstrate that the CAS-Net is superior to other baseline CD networks. The CAS-Net detection accuracy is 93.1% on the UAV-SD dataset. The code and the dataset can be found at https://github.com/WenbaLi/CAS-Net . |
doi_str_mv | 10.1109/TGRS.2024.3386918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3386918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10504920</ieee_id><sourcerecordid>3044631350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f23424c81b01ec3fc612c20e50999b8bf61d8e06045b7a151d587e259e7cf7bc3</originalsourceid><addsrcrecordid>eNpNkMtu2zAQRYmiAeK6-YAAXRDoWs4MH5KYnau2sYGgAeK4XQoUPbKVxKJL0jD695XtLLKaxT33DnAYu0aYIIK5ebp7XEwECDWRsswNlh_YCLUuM8iV-shGgCbPRGnEJfsU4zMAKo3FiB2q6SL7RemWV367s6GLvs--2UgrPk2J-tT5ni86u6VIfOAOPrzw1gdebWy_Jv6dErkT9KdLG257_rCjns-69SZ7pOhf96dwOf3N51t7LNg0rKfP7KK1r5Gu3u6YLX_-eKpm2f3D3bya3mdOqDxlrZBKKFdiA0hOti5H4QSQBmNMUzZtjquSIAelm8KixpUuCxLaUOHaonFyzL6ed3fB_91TTPWz34d-eFlLUCqXKDUMFJ4pF3yMgdp6F7qtDf9qhProtz76rY9-6ze_Q-fLudMR0TtegzIC5H-7fXYi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044631350</pqid></control><display><type>article</type><title>CAS-Net: Comparison-Based Attention Siamese Network for Change Detection With an Open High-Resolution UAV Image Dataset</title><source>IEEE Electronic Library (IEL)</source><creator>Zhai, Yikui ; Li, Wenba ; Xian, Tingfeng ; Jia, Xudong ; Zhang, Hongsheng ; Tan, Zijun ; Zhou, Jianhong ; Zeng, Junying ; Philip Chen, C. L.</creator><creatorcontrib>Zhai, Yikui ; Li, Wenba ; Xian, Tingfeng ; Jia, Xudong ; Zhang, Hongsheng ; Tan, Zijun ; Zhou, Jianhong ; Zeng, Junying ; Philip Chen, C. L.</creatorcontrib><description>Change detection (CD) is a process of extracting changes on the Earth's surface from bitemporal images. Current CD methods that use high-resolution remote sensing images require extensive computational resources and are vulnerable to the presence of irrelevant noises in the images. In addressing these challenges, a comparison-based attention Siamese network (CAS-Net) is proposed. The network utilizes contrastive attention modules (CAMs) for feature fusion and employs a classifier to determine similarities and differences of bitemporal image patches. It simplifies pixel-level CDs by comparing image patches. As such, the influences of image background noises on change predictions are reduced. Along with the CAS-Net, an unmanned aerial vehicle (UAV) similarity detection (UAV-SD) dataset is built using high-resolution remote sensing images. This dataset, serving as a benchmark for CD, comprises 10000 pairs of UAV images with a size of <inline-formula> <tex-math notation="LaTeX">256 \times 256 </tex-math></inline-formula>. Experiments of the CAS-Net on the UAV-SD dataset demonstrate that the CAS-Net is superior to other baseline CD networks. The CAS-Net detection accuracy is 93.1% on the UAV-SD dataset. The code and the dataset can be found at https://github.com/WenbaLi/CAS-Net .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3386918</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Autonomous aerial vehicles ; Background noise ; Change detection ; Change detection (CD) ; dataset ; Datasets ; Decoding ; Earth surface ; Feature extraction ; High resolution ; Image resolution ; Noise ; Remote sensing ; Siamese network ; Task analysis ; Transformers ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f23424c81b01ec3fc612c20e50999b8bf61d8e06045b7a151d587e259e7cf7bc3</cites><orcidid>0000-0001-7911-8869 ; 0000-0002-7559-0637 ; 0000-0003-0154-9743 ; 0009-0002-8072-9725 ; 0000-0001-5451-7230 ; 0000-0002-6135-9442 ; 0009-0001-6091-7318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10504920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10504920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai, Yikui</creatorcontrib><creatorcontrib>Li, Wenba</creatorcontrib><creatorcontrib>Xian, Tingfeng</creatorcontrib><creatorcontrib>Jia, Xudong</creatorcontrib><creatorcontrib>Zhang, Hongsheng</creatorcontrib><creatorcontrib>Tan, Zijun</creatorcontrib><creatorcontrib>Zhou, Jianhong</creatorcontrib><creatorcontrib>Zeng, Junying</creatorcontrib><creatorcontrib>Philip Chen, C. L.</creatorcontrib><title>CAS-Net: Comparison-Based Attention Siamese Network for Change Detection With an Open High-Resolution UAV Image Dataset</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Change detection (CD) is a process of extracting changes on the Earth's surface from bitemporal images. Current CD methods that use high-resolution remote sensing images require extensive computational resources and are vulnerable to the presence of irrelevant noises in the images. In addressing these challenges, a comparison-based attention Siamese network (CAS-Net) is proposed. The network utilizes contrastive attention modules (CAMs) for feature fusion and employs a classifier to determine similarities and differences of bitemporal image patches. It simplifies pixel-level CDs by comparing image patches. As such, the influences of image background noises on change predictions are reduced. Along with the CAS-Net, an unmanned aerial vehicle (UAV) similarity detection (UAV-SD) dataset is built using high-resolution remote sensing images. This dataset, serving as a benchmark for CD, comprises 10000 pairs of UAV images with a size of <inline-formula> <tex-math notation="LaTeX">256 \times 256 </tex-math></inline-formula>. Experiments of the CAS-Net on the UAV-SD dataset demonstrate that the CAS-Net is superior to other baseline CD networks. The CAS-Net detection accuracy is 93.1% on the UAV-SD dataset. The code and the dataset can be found at https://github.com/WenbaLi/CAS-Net .</description><subject>Artificial neural networks</subject><subject>Autonomous aerial vehicles</subject><subject>Background noise</subject><subject>Change detection</subject><subject>Change detection (CD)</subject><subject>dataset</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Earth surface</subject><subject>Feature extraction</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Noise</subject><subject>Remote sensing</subject><subject>Siamese network</subject><subject>Task analysis</subject><subject>Transformers</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtu2zAQRYmiAeK6-YAAXRDoWs4MH5KYnau2sYGgAeK4XQoUPbKVxKJL0jD695XtLLKaxT33DnAYu0aYIIK5ebp7XEwECDWRsswNlh_YCLUuM8iV-shGgCbPRGnEJfsU4zMAKo3FiB2q6SL7RemWV367s6GLvs--2UgrPk2J-tT5ni86u6VIfOAOPrzw1gdebWy_Jv6dErkT9KdLG257_rCjns-69SZ7pOhf96dwOf3N51t7LNg0rKfP7KK1r5Gu3u6YLX_-eKpm2f3D3bya3mdOqDxlrZBKKFdiA0hOti5H4QSQBmNMUzZtjquSIAelm8KixpUuCxLaUOHaonFyzL6ed3fB_91TTPWz34d-eFlLUCqXKDUMFJ4pF3yMgdp6F7qtDf9qhProtz76rY9-6ze_Q-fLudMR0TtegzIC5H-7fXYi</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhai, Yikui</creator><creator>Li, Wenba</creator><creator>Xian, Tingfeng</creator><creator>Jia, Xudong</creator><creator>Zhang, Hongsheng</creator><creator>Tan, Zijun</creator><creator>Zhou, Jianhong</creator><creator>Zeng, Junying</creator><creator>Philip Chen, C. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7911-8869</orcidid><orcidid>https://orcid.org/0000-0002-7559-0637</orcidid><orcidid>https://orcid.org/0000-0003-0154-9743</orcidid><orcidid>https://orcid.org/0009-0002-8072-9725</orcidid><orcidid>https://orcid.org/0000-0001-5451-7230</orcidid><orcidid>https://orcid.org/0000-0002-6135-9442</orcidid><orcidid>https://orcid.org/0009-0001-6091-7318</orcidid></search><sort><creationdate>2024</creationdate><title>CAS-Net: Comparison-Based Attention Siamese Network for Change Detection With an Open High-Resolution UAV Image Dataset</title><author>Zhai, Yikui ; Li, Wenba ; Xian, Tingfeng ; Jia, Xudong ; Zhang, Hongsheng ; Tan, Zijun ; Zhou, Jianhong ; Zeng, Junying ; Philip Chen, C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f23424c81b01ec3fc612c20e50999b8bf61d8e06045b7a151d587e259e7cf7bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Autonomous aerial vehicles</topic><topic>Background noise</topic><topic>Change detection</topic><topic>Change detection (CD)</topic><topic>dataset</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Earth surface</topic><topic>Feature extraction</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Noise</topic><topic>Remote sensing</topic><topic>Siamese network</topic><topic>Task analysis</topic><topic>Transformers</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yikui</creatorcontrib><creatorcontrib>Li, Wenba</creatorcontrib><creatorcontrib>Xian, Tingfeng</creatorcontrib><creatorcontrib>Jia, Xudong</creatorcontrib><creatorcontrib>Zhang, Hongsheng</creatorcontrib><creatorcontrib>Tan, Zijun</creatorcontrib><creatorcontrib>Zhou, Jianhong</creatorcontrib><creatorcontrib>Zeng, Junying</creatorcontrib><creatorcontrib>Philip Chen, C. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Yikui</au><au>Li, Wenba</au><au>Xian, Tingfeng</au><au>Jia, Xudong</au><au>Zhang, Hongsheng</au><au>Tan, Zijun</au><au>Zhou, Jianhong</au><au>Zeng, Junying</au><au>Philip Chen, C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAS-Net: Comparison-Based Attention Siamese Network for Change Detection With an Open High-Resolution UAV Image Dataset</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Change detection (CD) is a process of extracting changes on the Earth's surface from bitemporal images. Current CD methods that use high-resolution remote sensing images require extensive computational resources and are vulnerable to the presence of irrelevant noises in the images. In addressing these challenges, a comparison-based attention Siamese network (CAS-Net) is proposed. The network utilizes contrastive attention modules (CAMs) for feature fusion and employs a classifier to determine similarities and differences of bitemporal image patches. It simplifies pixel-level CDs by comparing image patches. As such, the influences of image background noises on change predictions are reduced. Along with the CAS-Net, an unmanned aerial vehicle (UAV) similarity detection (UAV-SD) dataset is built using high-resolution remote sensing images. This dataset, serving as a benchmark for CD, comprises 10000 pairs of UAV images with a size of <inline-formula> <tex-math notation="LaTeX">256 \times 256 </tex-math></inline-formula>. Experiments of the CAS-Net on the UAV-SD dataset demonstrate that the CAS-Net is superior to other baseline CD networks. The CAS-Net detection accuracy is 93.1% on the UAV-SD dataset. The code and the dataset can be found at https://github.com/WenbaLi/CAS-Net .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3386918</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7911-8869</orcidid><orcidid>https://orcid.org/0000-0002-7559-0637</orcidid><orcidid>https://orcid.org/0000-0003-0154-9743</orcidid><orcidid>https://orcid.org/0009-0002-8072-9725</orcidid><orcidid>https://orcid.org/0000-0001-5451-7230</orcidid><orcidid>https://orcid.org/0000-0002-6135-9442</orcidid><orcidid>https://orcid.org/0009-0001-6091-7318</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3386918 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Autonomous aerial vehicles Background noise Change detection Change detection (CD) dataset Datasets Decoding Earth surface Feature extraction High resolution Image resolution Noise Remote sensing Siamese network Task analysis Transformers unmanned aerial vehicle (UAV) Unmanned aerial vehicles |
title | CAS-Net: Comparison-Based Attention Siamese Network for Change Detection With an Open High-Resolution UAV Image Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAS-Net:%20Comparison-Based%20Attention%20Siamese%20Network%20for%20Change%20Detection%20With%20an%20Open%20High-Resolution%20UAV%20Image%20Dataset&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhai,%20Yikui&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3386918&rft_dat=%3Cproquest_RIE%3E3044631350%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044631350&rft_id=info:pmid/&rft_ieee_id=10504920&rfr_iscdi=true |