Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM

Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12
Hauptverfasser: Yang, Songlin, Lian, Huiqing, Soltanian, Mohamad Reza, Xu, Bin, Liu, Wei, Thanh, Hung Vo, Li, Yarui, Yin, Huichao, Dai, Zhenxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Yang, Songlin
Lian, Huiqing
Soltanian, Mohamad Reza
Xu, Bin
Liu, Wei
Thanh, Hung Vo
Li, Yarui
Yin, Huichao
Dai, Zhenxue
description Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.
doi_str_mv 10.1109/TGRS.2024.3384990
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3384990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491316</ieee_id><sourcerecordid>3040054834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-97e6f322c7d4fa3643698368890da02b6f52b2bc864540da7dd80e11627a5ba53</originalsourceid><addsrcrecordid>eNpNkctKAzEUhoMoWC8PILgIuJ6a22QSd3WsWqgotuJyyEwSG6lJTabIvI5P6ox14Sqc8P3fgfMDcIbRGGMkL5d3z4sxQYSNKRVMSrQHRjjPRYY4Y_tghLDkGRGSHIKjlN4RwizHxQh833d1dBpONpsYVLOCNkQ4VXHdwVcVvfNvMFj44Lzp59bEKzj1Jr518Mb45Nouu1bJaDjTxrfOuka1Lvgh8ktnZfB627SDplwp7806wTJ81L1Pw1fXrnYcnHm7Dl_wKRrtml9F3cHFJJsvlg8n4MCqdTKnf-8xeLmdLsv7bP54Nysn86whjLeZLAy3lJCm0MwqyhnlUlAuhERaIVJzm5Oa1I3gLGf9V6G1QAZjTgqV1yqnx-Bi5-0v8bk1qa3ewzb6fmVFEUMoZ4KynsI7qokhpWhstYnuQ8WuwqgaqqiGKqqhiuqvij5zvss4Y8w_nklMMac_glyFxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040054834</pqid></control><display><type>article</type><title>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Songlin ; Lian, Huiqing ; Soltanian, Mohamad Reza ; Xu, Bin ; Liu, Wei ; Thanh, Hung Vo ; Li, Yarui ; Yin, Huichao ; Dai, Zhenxue</creator><creatorcontrib>Yang, Songlin ; Lian, Huiqing ; Soltanian, Mohamad Reza ; Xu, Bin ; Liu, Wei ; Thanh, Hung Vo ; Li, Yarui ; Yin, Huichao ; Dai, Zhenxue</creatorcontrib><description>Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3384990</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coal ; Coal mines ; Data models ; Faces ; Forecasting ; Fracture point ; Groundwater ; Groundwater levels ; Heterogeneity ; Inflow ; Long short term memory ; Long short-term memory (LSTM) ; machine learning ; microseismic energy density ; Microseisms ; Mine drainage ; mine water inflow prediction ; Mine waters ; Mining accidents &amp; safety ; Monitoring ; Predictive models ; Root-mean-square errors ; self-attention mechanism ; Water inflow</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-97e6f322c7d4fa3643698368890da02b6f52b2bc864540da7dd80e11627a5ba53</cites><orcidid>0009-0009-8061-4937 ; 0000-0001-6172-5580 ; 0000-0002-5126-0668 ; 0000-0002-0805-7621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Songlin</creatorcontrib><creatorcontrib>Lian, Huiqing</creatorcontrib><creatorcontrib>Soltanian, Mohamad Reza</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Thanh, Hung Vo</creatorcontrib><creatorcontrib>Li, Yarui</creatorcontrib><creatorcontrib>Yin, Huichao</creatorcontrib><creatorcontrib>Dai, Zhenxue</creatorcontrib><title>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.</description><subject>Coal</subject><subject>Coal mines</subject><subject>Data models</subject><subject>Faces</subject><subject>Forecasting</subject><subject>Fracture point</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Heterogeneity</subject><subject>Inflow</subject><subject>Long short term memory</subject><subject>Long short-term memory (LSTM)</subject><subject>machine learning</subject><subject>microseismic energy density</subject><subject>Microseisms</subject><subject>Mine drainage</subject><subject>mine water inflow prediction</subject><subject>Mine waters</subject><subject>Mining accidents &amp; safety</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Root-mean-square errors</subject><subject>self-attention mechanism</subject><subject>Water inflow</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkctKAzEUhoMoWC8PILgIuJ6a22QSd3WsWqgotuJyyEwSG6lJTabIvI5P6ox14Sqc8P3fgfMDcIbRGGMkL5d3z4sxQYSNKRVMSrQHRjjPRYY4Y_tghLDkGRGSHIKjlN4RwizHxQh833d1dBpONpsYVLOCNkQ4VXHdwVcVvfNvMFj44Lzp59bEKzj1Jr518Mb45Nouu1bJaDjTxrfOuka1Lvgh8ktnZfB627SDplwp7806wTJ81L1Pw1fXrnYcnHm7Dl_wKRrtml9F3cHFJJsvlg8n4MCqdTKnf-8xeLmdLsv7bP54Nysn86whjLeZLAy3lJCm0MwqyhnlUlAuhERaIVJzm5Oa1I3gLGf9V6G1QAZjTgqV1yqnx-Bi5-0v8bk1qa3ewzb6fmVFEUMoZ4KynsI7qokhpWhstYnuQ8WuwqgaqqiGKqqhiuqvij5zvss4Y8w_nklMMac_glyFxA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Songlin</creator><creator>Lian, Huiqing</creator><creator>Soltanian, Mohamad Reza</creator><creator>Xu, Bin</creator><creator>Liu, Wei</creator><creator>Thanh, Hung Vo</creator><creator>Li, Yarui</creator><creator>Yin, Huichao</creator><creator>Dai, Zhenxue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-8061-4937</orcidid><orcidid>https://orcid.org/0000-0001-6172-5580</orcidid><orcidid>https://orcid.org/0000-0002-5126-0668</orcidid><orcidid>https://orcid.org/0000-0002-0805-7621</orcidid></search><sort><creationdate>2024</creationdate><title>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</title><author>Yang, Songlin ; Lian, Huiqing ; Soltanian, Mohamad Reza ; Xu, Bin ; Liu, Wei ; Thanh, Hung Vo ; Li, Yarui ; Yin, Huichao ; Dai, Zhenxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-97e6f322c7d4fa3643698368890da02b6f52b2bc864540da7dd80e11627a5ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coal</topic><topic>Coal mines</topic><topic>Data models</topic><topic>Faces</topic><topic>Forecasting</topic><topic>Fracture point</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Heterogeneity</topic><topic>Inflow</topic><topic>Long short term memory</topic><topic>Long short-term memory (LSTM)</topic><topic>machine learning</topic><topic>microseismic energy density</topic><topic>Microseisms</topic><topic>Mine drainage</topic><topic>mine water inflow prediction</topic><topic>Mine waters</topic><topic>Mining accidents &amp; safety</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Root-mean-square errors</topic><topic>self-attention mechanism</topic><topic>Water inflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Songlin</creatorcontrib><creatorcontrib>Lian, Huiqing</creatorcontrib><creatorcontrib>Soltanian, Mohamad Reza</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Thanh, Hung Vo</creatorcontrib><creatorcontrib>Li, Yarui</creatorcontrib><creatorcontrib>Yin, Huichao</creatorcontrib><creatorcontrib>Dai, Zhenxue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Songlin</au><au>Lian, Huiqing</au><au>Soltanian, Mohamad Reza</au><au>Xu, Bin</au><au>Liu, Wei</au><au>Thanh, Hung Vo</au><au>Li, Yarui</au><au>Yin, Huichao</au><au>Dai, Zhenxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3384990</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0009-8061-4937</orcidid><orcidid>https://orcid.org/0000-0001-6172-5580</orcidid><orcidid>https://orcid.org/0000-0002-5126-0668</orcidid><orcidid>https://orcid.org/0000-0002-0805-7621</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3384990
source IEEE Electronic Library (IEL)
subjects Coal
Coal mines
Data models
Faces
Forecasting
Fracture point
Groundwater
Groundwater levels
Heterogeneity
Inflow
Long short term memory
Long short-term memory (LSTM)
machine learning
microseismic energy density
Microseisms
Mine drainage
mine water inflow prediction
Mine waters
Mining accidents & safety
Monitoring
Predictive models
Root-mean-square errors
self-attention mechanism
Water inflow
title Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Approach%20for%20Early%20Warning%20of%20Mine%20Water:%20Energy%20Density-Based%20Identification%20of%20Water-Conducting%20Channels%20Combined%20With%20Water%20Inflow%20Prediction%20by%20SA-LSTM&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Songlin&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3384990&rft_dat=%3Cproquest_RIE%3E3040054834%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040054834&rft_id=info:pmid/&rft_ieee_id=10491316&rfr_iscdi=true