Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM
Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the uti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Yang, Songlin Lian, Huiqing Soltanian, Mohamad Reza Xu, Bin Liu, Wei Thanh, Hung Vo Li, Yarui Yin, Huichao Dai, Zhenxue |
description | Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine. |
doi_str_mv | 10.1109/TGRS.2024.3384990 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3384990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10491316</ieee_id><sourcerecordid>3040054834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-97e6f322c7d4fa3643698368890da02b6f52b2bc864540da7dd80e11627a5ba53</originalsourceid><addsrcrecordid>eNpNkctKAzEUhoMoWC8PILgIuJ6a22QSd3WsWqgotuJyyEwSG6lJTabIvI5P6ox14Sqc8P3fgfMDcIbRGGMkL5d3z4sxQYSNKRVMSrQHRjjPRYY4Y_tghLDkGRGSHIKjlN4RwizHxQh833d1dBpONpsYVLOCNkQ4VXHdwVcVvfNvMFj44Lzp59bEKzj1Jr518Mb45Nouu1bJaDjTxrfOuka1Lvgh8ktnZfB627SDplwp7806wTJ81L1Pw1fXrnYcnHm7Dl_wKRrtml9F3cHFJJsvlg8n4MCqdTKnf-8xeLmdLsv7bP54Nysn86whjLeZLAy3lJCm0MwqyhnlUlAuhERaIVJzm5Oa1I3gLGf9V6G1QAZjTgqV1yqnx-Bi5-0v8bk1qa3ewzb6fmVFEUMoZ4KynsI7qokhpWhstYnuQ8WuwqgaqqiGKqqhiuqvij5zvss4Y8w_nklMMac_glyFxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040054834</pqid></control><display><type>article</type><title>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Songlin ; Lian, Huiqing ; Soltanian, Mohamad Reza ; Xu, Bin ; Liu, Wei ; Thanh, Hung Vo ; Li, Yarui ; Yin, Huichao ; Dai, Zhenxue</creator><creatorcontrib>Yang, Songlin ; Lian, Huiqing ; Soltanian, Mohamad Reza ; Xu, Bin ; Liu, Wei ; Thanh, Hung Vo ; Li, Yarui ; Yin, Huichao ; Dai, Zhenxue</creatorcontrib><description>Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3384990</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coal ; Coal mines ; Data models ; Faces ; Forecasting ; Fracture point ; Groundwater ; Groundwater levels ; Heterogeneity ; Inflow ; Long short term memory ; Long short-term memory (LSTM) ; machine learning ; microseismic energy density ; Microseisms ; Mine drainage ; mine water inflow prediction ; Mine waters ; Mining accidents & safety ; Monitoring ; Predictive models ; Root-mean-square errors ; self-attention mechanism ; Water inflow</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-97e6f322c7d4fa3643698368890da02b6f52b2bc864540da7dd80e11627a5ba53</cites><orcidid>0009-0009-8061-4937 ; 0000-0001-6172-5580 ; 0000-0002-5126-0668 ; 0000-0002-0805-7621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10491316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10491316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Songlin</creatorcontrib><creatorcontrib>Lian, Huiqing</creatorcontrib><creatorcontrib>Soltanian, Mohamad Reza</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Thanh, Hung Vo</creatorcontrib><creatorcontrib>Li, Yarui</creatorcontrib><creatorcontrib>Yin, Huichao</creatorcontrib><creatorcontrib>Dai, Zhenxue</creatorcontrib><title>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.</description><subject>Coal</subject><subject>Coal mines</subject><subject>Data models</subject><subject>Faces</subject><subject>Forecasting</subject><subject>Fracture point</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Heterogeneity</subject><subject>Inflow</subject><subject>Long short term memory</subject><subject>Long short-term memory (LSTM)</subject><subject>machine learning</subject><subject>microseismic energy density</subject><subject>Microseisms</subject><subject>Mine drainage</subject><subject>mine water inflow prediction</subject><subject>Mine waters</subject><subject>Mining accidents & safety</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Root-mean-square errors</subject><subject>self-attention mechanism</subject><subject>Water inflow</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkctKAzEUhoMoWC8PILgIuJ6a22QSd3WsWqgotuJyyEwSG6lJTabIvI5P6ox14Sqc8P3fgfMDcIbRGGMkL5d3z4sxQYSNKRVMSrQHRjjPRYY4Y_tghLDkGRGSHIKjlN4RwizHxQh833d1dBpONpsYVLOCNkQ4VXHdwVcVvfNvMFj44Lzp59bEKzj1Jr518Mb45Nouu1bJaDjTxrfOuka1Lvgh8ktnZfB627SDplwp7806wTJ81L1Pw1fXrnYcnHm7Dl_wKRrtml9F3cHFJJsvlg8n4MCqdTKnf-8xeLmdLsv7bP54Nysn86whjLeZLAy3lJCm0MwqyhnlUlAuhERaIVJzm5Oa1I3gLGf9V6G1QAZjTgqV1yqnx-Bi5-0v8bk1qa3ewzb6fmVFEUMoZ4KynsI7qokhpWhstYnuQ8WuwqgaqqiGKqqhiuqvij5zvss4Y8w_nklMMac_glyFxA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Songlin</creator><creator>Lian, Huiqing</creator><creator>Soltanian, Mohamad Reza</creator><creator>Xu, Bin</creator><creator>Liu, Wei</creator><creator>Thanh, Hung Vo</creator><creator>Li, Yarui</creator><creator>Yin, Huichao</creator><creator>Dai, Zhenxue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-8061-4937</orcidid><orcidid>https://orcid.org/0000-0001-6172-5580</orcidid><orcidid>https://orcid.org/0000-0002-5126-0668</orcidid><orcidid>https://orcid.org/0000-0002-0805-7621</orcidid></search><sort><creationdate>2024</creationdate><title>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</title><author>Yang, Songlin ; Lian, Huiqing ; Soltanian, Mohamad Reza ; Xu, Bin ; Liu, Wei ; Thanh, Hung Vo ; Li, Yarui ; Yin, Huichao ; Dai, Zhenxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-97e6f322c7d4fa3643698368890da02b6f52b2bc864540da7dd80e11627a5ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coal</topic><topic>Coal mines</topic><topic>Data models</topic><topic>Faces</topic><topic>Forecasting</topic><topic>Fracture point</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Heterogeneity</topic><topic>Inflow</topic><topic>Long short term memory</topic><topic>Long short-term memory (LSTM)</topic><topic>machine learning</topic><topic>microseismic energy density</topic><topic>Microseisms</topic><topic>Mine drainage</topic><topic>mine water inflow prediction</topic><topic>Mine waters</topic><topic>Mining accidents & safety</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Root-mean-square errors</topic><topic>self-attention mechanism</topic><topic>Water inflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Songlin</creatorcontrib><creatorcontrib>Lian, Huiqing</creatorcontrib><creatorcontrib>Soltanian, Mohamad Reza</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Thanh, Hung Vo</creatorcontrib><creatorcontrib>Li, Yarui</creatorcontrib><creatorcontrib>Yin, Huichao</creatorcontrib><creatorcontrib>Dai, Zhenxue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Songlin</au><au>Lian, Huiqing</au><au>Soltanian, Mohamad Reza</au><au>Xu, Bin</au><au>Liu, Wei</au><au>Thanh, Hung Vo</au><au>Li, Yarui</au><au>Yin, Huichao</au><au>Dai, Zhenxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Promoting sustainable mining practices while safeguarding water ecosystems demands precise anticipation of mine water influx. This investigation pioneers a novel approach harnessing microseismic monitoring to detect water-conducting conduits and elevate proactive response strategies. Through the utilization of microseismic energy density analysis, fracture points within rock formations are continuously monitored, offering real-time insights. Nonetheless, the data generated from this method often exhibits fragmentation, sporadic patterns, and data heterogeneity, complicating the identification of evolving water-conducting pathways. To surmount this challenge, we have seamlessly integrated the self-attention mechanism into the long short-term memory (LSTM) model, resulting in the innovative SA-LSTM fusion. This hybrid model predicts the following day's water inflow, effectively merging data from microseismic monitoring with groundwater levels. This fusion facilitates a robust correlation between monitoring data and water inflow metrics. Comparative assessments underscore the SA-LSTM's superiority over other intricate time series models in terms of forecast precision, with a mean absolute error(MAE) of 21.8 m3/h, an RMSE of 39.3 m3/h, and an MAPE of 2.8% in the test stage of the water inflow event. By amalgamating diverse datasets, it substantially enhances the accuracy of predicting water inflow within coal mines. The discernments from this study not only introduce more accurate water inflow predictions but also provide technical guidance for the safety production of mine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3384990</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0009-8061-4937</orcidid><orcidid>https://orcid.org/0000-0001-6172-5580</orcidid><orcidid>https://orcid.org/0000-0002-5126-0668</orcidid><orcidid>https://orcid.org/0000-0002-0805-7621</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3384990 |
source | IEEE Electronic Library (IEL) |
subjects | Coal Coal mines Data models Faces Forecasting Fracture point Groundwater Groundwater levels Heterogeneity Inflow Long short term memory Long short-term memory (LSTM) machine learning microseismic energy density Microseisms Mine drainage mine water inflow prediction Mine waters Mining accidents & safety Monitoring Predictive models Root-mean-square errors self-attention mechanism Water inflow |
title | Hybrid Approach for Early Warning of Mine Water: Energy Density-Based Identification of Water-Conducting Channels Combined With Water Inflow Prediction by SA-LSTM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Approach%20for%20Early%20Warning%20of%20Mine%20Water:%20Energy%20Density-Based%20Identification%20of%20Water-Conducting%20Channels%20Combined%20With%20Water%20Inflow%20Prediction%20by%20SA-LSTM&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Songlin&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3384990&rft_dat=%3Cproquest_RIE%3E3040054834%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040054834&rft_id=info:pmid/&rft_ieee_id=10491316&rfr_iscdi=true |