Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model

The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12
Hauptverfasser: Li, Shengjun, Gao, Jianhu, Lou, Yihuai, Gui, Jinyong, He, Dongyang, Chang, Dekuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Li, Shengjun
Gao, Jianhu
Lou, Yihuai
Gui, Jinyong
He, Dongyang
Chang, Dekuan
description The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.
doi_str_mv 10.1109/TGRS.2024.3376336
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3376336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472884</ieee_id><sourcerecordid>3031392955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1c15e12f4ffc28cf82317b24cc0bbf5022234d91aa794b5b52a70286f955d1c43</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVncpL043JMncKGsM7rkKYn0lHbmrSC_97W7cKrwwvP-x54CLnlbME5yx72612-AAZyIUQSCxGfkRlXKo1YLOU5mTGexRGkGVySqxAOjHGpeDIjOsfOeNNXbUNNU9J86DqPIUy5dTTvfdt80B26Gu0EBfpdGWrodqj7KlhTI132PTZ_A4-IHd2g8U01lrZtifU1uXCmDnhzunPy_vy0X71Em7f162q5iSzIuI-45Qo5OOmchdS6FARPCpDWsqJwigGAkGXGjUkyWahCgUkYpLHLlCq5lWJO7o-7nW-_Bgy9PrSDb8aXWjDBRQYjOVL8SFnfhuDR6c5Xn8b_aM705FFPHvXkUZ88jp27Y6dCxH-8TCBNpfgFFRxu-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031392955</pqid></control><display><type>article</type><title>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shengjun ; Gao, Jianhu ; Lou, Yihuai ; Gui, Jinyong ; He, Dongyang ; Chang, Dekuan</creator><creatorcontrib>Li, Shengjun ; Gao, Jianhu ; Lou, Yihuai ; Gui, Jinyong ; He, Dongyang ; Chang, Dekuan</creatorcontrib><description>The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3376336</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention module ; Coal ; coal seam ; Data models ; Deep learning ; deep learning (DL) ; Dictionaries ; Discrete Wavelet Transform ; discrete wavelet transform (DWT) ; Discrete wavelet transforms ; Feature extraction ; Glossaries ; Matched pursuit ; Matching pursuit algorithms ; Reflection ; seismic strong reflection ; Separation ; Synthetic data ; Thin films ; Three dimensional models ; Training ; Wavelet transforms ; Well logs ; Workflow</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1c15e12f4ffc28cf82317b24cc0bbf5022234d91aa794b5b52a70286f955d1c43</cites><orcidid>0000-0002-5983-2608 ; 0000-0001-9312-4966 ; 0000-0002-1898-0321 ; 0000-0001-6612-9323 ; 0000-0002-8798-4369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10472884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shengjun</creatorcontrib><creatorcontrib>Gao, Jianhu</creatorcontrib><creatorcontrib>Lou, Yihuai</creatorcontrib><creatorcontrib>Gui, Jinyong</creatorcontrib><creatorcontrib>He, Dongyang</creatorcontrib><creatorcontrib>Chang, Dekuan</creatorcontrib><title>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.</description><subject>Attention module</subject><subject>Coal</subject><subject>coal seam</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Dictionaries</subject><subject>Discrete Wavelet Transform</subject><subject>discrete wavelet transform (DWT)</subject><subject>Discrete wavelet transforms</subject><subject>Feature extraction</subject><subject>Glossaries</subject><subject>Matched pursuit</subject><subject>Matching pursuit algorithms</subject><subject>Reflection</subject><subject>seismic strong reflection</subject><subject>Separation</subject><subject>Synthetic data</subject><subject>Thin films</subject><subject>Three dimensional models</subject><subject>Training</subject><subject>Wavelet transforms</subject><subject>Well logs</subject><subject>Workflow</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVncpL043JMncKGsM7rkKYn0lHbmrSC_97W7cKrwwvP-x54CLnlbME5yx72612-AAZyIUQSCxGfkRlXKo1YLOU5mTGexRGkGVySqxAOjHGpeDIjOsfOeNNXbUNNU9J86DqPIUy5dTTvfdt80B26Gu0EBfpdGWrodqj7KlhTI132PTZ_A4-IHd2g8U01lrZtifU1uXCmDnhzunPy_vy0X71Em7f162q5iSzIuI-45Qo5OOmchdS6FARPCpDWsqJwigGAkGXGjUkyWahCgUkYpLHLlCq5lWJO7o-7nW-_Bgy9PrSDb8aXWjDBRQYjOVL8SFnfhuDR6c5Xn8b_aM705FFPHvXkUZ88jp27Y6dCxH-8TCBNpfgFFRxu-g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Shengjun</creator><creator>Gao, Jianhu</creator><creator>Lou, Yihuai</creator><creator>Gui, Jinyong</creator><creator>He, Dongyang</creator><creator>Chang, Dekuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5983-2608</orcidid><orcidid>https://orcid.org/0000-0001-9312-4966</orcidid><orcidid>https://orcid.org/0000-0002-1898-0321</orcidid><orcidid>https://orcid.org/0000-0001-6612-9323</orcidid><orcidid>https://orcid.org/0000-0002-8798-4369</orcidid></search><sort><creationdate>2024</creationdate><title>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</title><author>Li, Shengjun ; Gao, Jianhu ; Lou, Yihuai ; Gui, Jinyong ; He, Dongyang ; Chang, Dekuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1c15e12f4ffc28cf82317b24cc0bbf5022234d91aa794b5b52a70286f955d1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention module</topic><topic>Coal</topic><topic>coal seam</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Dictionaries</topic><topic>Discrete Wavelet Transform</topic><topic>discrete wavelet transform (DWT)</topic><topic>Discrete wavelet transforms</topic><topic>Feature extraction</topic><topic>Glossaries</topic><topic>Matched pursuit</topic><topic>Matching pursuit algorithms</topic><topic>Reflection</topic><topic>seismic strong reflection</topic><topic>Separation</topic><topic>Synthetic data</topic><topic>Thin films</topic><topic>Three dimensional models</topic><topic>Training</topic><topic>Wavelet transforms</topic><topic>Well logs</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shengjun</creatorcontrib><creatorcontrib>Gao, Jianhu</creatorcontrib><creatorcontrib>Lou, Yihuai</creatorcontrib><creatorcontrib>Gui, Jinyong</creatorcontrib><creatorcontrib>He, Dongyang</creatorcontrib><creatorcontrib>Chang, Dekuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shengjun</au><au>Gao, Jianhu</au><au>Lou, Yihuai</au><au>Gui, Jinyong</au><au>He, Dongyang</au><au>Chang, Dekuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3376336</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5983-2608</orcidid><orcidid>https://orcid.org/0000-0001-9312-4966</orcidid><orcidid>https://orcid.org/0000-0002-1898-0321</orcidid><orcidid>https://orcid.org/0000-0001-6612-9323</orcidid><orcidid>https://orcid.org/0000-0002-8798-4369</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3376336
source IEEE Electronic Library (IEL)
subjects Attention module
Coal
coal seam
Data models
Deep learning
deep learning (DL)
Dictionaries
Discrete Wavelet Transform
discrete wavelet transform (DWT)
Discrete wavelet transforms
Feature extraction
Glossaries
Matched pursuit
Matching pursuit algorithms
Reflection
seismic strong reflection
Separation
Synthetic data
Thin films
Three dimensional models
Training
Wavelet transforms
Well logs
Workflow
title Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20and%20Suppression%20of%20Strong%20Reflections%20via%20a%20Multiscale%20Attention%20Deep%20Learning%20Model&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Shengjun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3376336&rft_dat=%3Cproquest_RIE%3E3031392955%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031392955&rft_id=info:pmid/&rft_ieee_id=10472884&rfr_iscdi=true