Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model
The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Li, Shengjun Gao, Jianhu Lou, Yihuai Gui, Jinyong He, Dongyang Chang, Dekuan |
description | The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers. |
doi_str_mv | 10.1109/TGRS.2024.3376336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3376336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10472884</ieee_id><sourcerecordid>3031392955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1c15e12f4ffc28cf82317b24cc0bbf5022234d91aa794b5b52a70286f955d1c43</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVncpL043JMncKGsM7rkKYn0lHbmrSC_97W7cKrwwvP-x54CLnlbME5yx72612-AAZyIUQSCxGfkRlXKo1YLOU5mTGexRGkGVySqxAOjHGpeDIjOsfOeNNXbUNNU9J86DqPIUy5dTTvfdt80B26Gu0EBfpdGWrodqj7KlhTI132PTZ_A4-IHd2g8U01lrZtifU1uXCmDnhzunPy_vy0X71Em7f162q5iSzIuI-45Qo5OOmchdS6FARPCpDWsqJwigGAkGXGjUkyWahCgUkYpLHLlCq5lWJO7o-7nW-_Bgy9PrSDb8aXWjDBRQYjOVL8SFnfhuDR6c5Xn8b_aM705FFPHvXkUZ88jp27Y6dCxH-8TCBNpfgFFRxu-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031392955</pqid></control><display><type>article</type><title>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shengjun ; Gao, Jianhu ; Lou, Yihuai ; Gui, Jinyong ; He, Dongyang ; Chang, Dekuan</creator><creatorcontrib>Li, Shengjun ; Gao, Jianhu ; Lou, Yihuai ; Gui, Jinyong ; He, Dongyang ; Chang, Dekuan</creatorcontrib><description>The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3376336</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention module ; Coal ; coal seam ; Data models ; Deep learning ; deep learning (DL) ; Dictionaries ; Discrete Wavelet Transform ; discrete wavelet transform (DWT) ; Discrete wavelet transforms ; Feature extraction ; Glossaries ; Matched pursuit ; Matching pursuit algorithms ; Reflection ; seismic strong reflection ; Separation ; Synthetic data ; Thin films ; Three dimensional models ; Training ; Wavelet transforms ; Well logs ; Workflow</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1c15e12f4ffc28cf82317b24cc0bbf5022234d91aa794b5b52a70286f955d1c43</cites><orcidid>0000-0002-5983-2608 ; 0000-0001-9312-4966 ; 0000-0002-1898-0321 ; 0000-0001-6612-9323 ; 0000-0002-8798-4369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10472884$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10472884$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shengjun</creatorcontrib><creatorcontrib>Gao, Jianhu</creatorcontrib><creatorcontrib>Lou, Yihuai</creatorcontrib><creatorcontrib>Gui, Jinyong</creatorcontrib><creatorcontrib>He, Dongyang</creatorcontrib><creatorcontrib>Chang, Dekuan</creatorcontrib><title>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.</description><subject>Attention module</subject><subject>Coal</subject><subject>coal seam</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep learning (DL)</subject><subject>Dictionaries</subject><subject>Discrete Wavelet Transform</subject><subject>discrete wavelet transform (DWT)</subject><subject>Discrete wavelet transforms</subject><subject>Feature extraction</subject><subject>Glossaries</subject><subject>Matched pursuit</subject><subject>Matching pursuit algorithms</subject><subject>Reflection</subject><subject>seismic strong reflection</subject><subject>Separation</subject><subject>Synthetic data</subject><subject>Thin films</subject><subject>Three dimensional models</subject><subject>Training</subject><subject>Wavelet transforms</subject><subject>Well logs</subject><subject>Workflow</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVncpL043JMncKGsM7rkKYn0lHbmrSC_97W7cKrwwvP-x54CLnlbME5yx72612-AAZyIUQSCxGfkRlXKo1YLOU5mTGexRGkGVySqxAOjHGpeDIjOsfOeNNXbUNNU9J86DqPIUy5dTTvfdt80B26Gu0EBfpdGWrodqj7KlhTI132PTZ_A4-IHd2g8U01lrZtifU1uXCmDnhzunPy_vy0X71Em7f162q5iSzIuI-45Qo5OOmchdS6FARPCpDWsqJwigGAkGXGjUkyWahCgUkYpLHLlCq5lWJO7o-7nW-_Bgy9PrSDb8aXWjDBRQYjOVL8SFnfhuDR6c5Xn8b_aM705FFPHvXkUZ88jp27Y6dCxH-8TCBNpfgFFRxu-g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Shengjun</creator><creator>Gao, Jianhu</creator><creator>Lou, Yihuai</creator><creator>Gui, Jinyong</creator><creator>He, Dongyang</creator><creator>Chang, Dekuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5983-2608</orcidid><orcidid>https://orcid.org/0000-0001-9312-4966</orcidid><orcidid>https://orcid.org/0000-0002-1898-0321</orcidid><orcidid>https://orcid.org/0000-0001-6612-9323</orcidid><orcidid>https://orcid.org/0000-0002-8798-4369</orcidid></search><sort><creationdate>2024</creationdate><title>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</title><author>Li, Shengjun ; Gao, Jianhu ; Lou, Yihuai ; Gui, Jinyong ; He, Dongyang ; Chang, Dekuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1c15e12f4ffc28cf82317b24cc0bbf5022234d91aa794b5b52a70286f955d1c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention module</topic><topic>Coal</topic><topic>coal seam</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep learning (DL)</topic><topic>Dictionaries</topic><topic>Discrete Wavelet Transform</topic><topic>discrete wavelet transform (DWT)</topic><topic>Discrete wavelet transforms</topic><topic>Feature extraction</topic><topic>Glossaries</topic><topic>Matched pursuit</topic><topic>Matching pursuit algorithms</topic><topic>Reflection</topic><topic>seismic strong reflection</topic><topic>Separation</topic><topic>Synthetic data</topic><topic>Thin films</topic><topic>Three dimensional models</topic><topic>Training</topic><topic>Wavelet transforms</topic><topic>Well logs</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shengjun</creatorcontrib><creatorcontrib>Gao, Jianhu</creatorcontrib><creatorcontrib>Lou, Yihuai</creatorcontrib><creatorcontrib>Gui, Jinyong</creatorcontrib><creatorcontrib>He, Dongyang</creatorcontrib><creatorcontrib>Chang, Dekuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shengjun</au><au>Gao, Jianhu</au><au>Lou, Yihuai</au><au>Gui, Jinyong</au><au>He, Dongyang</au><au>Chang, Dekuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The existence of coal seams suppresses other useful information, especially the below-thin layers, and is unfavorable for delineating the target reservoirs beneath them. The matching pursuit (MP)-based methods are commonly used for removing strong reflections caused by coal seams. They first decompose a seismic trace into several wavelets based on a user-defined wavelet dictionary and then separate the most similar wavelet with the coal seam. However, how to define a complete wavelet dictionary and how to maintain horizontal continuity are two unsolved issues. We propose a multiscale attention deep learning (MSADL) model for separating and removing seismic strong reflections. First, we suggest a workflow to generate a synthetic dataset for model training based on the characteristics of field data and well logs. Next, we build an MSADL model by integrating the discrete wavelet transform (DWT) and convolutional block attention module (CBAM) into the widely used Unet. After model training, we apply the well-trained MSADL model to 3-D field data in the Sichuan Basin, China for the separation and removal of strong reflections and characterization of the beneath target thin layers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3376336</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5983-2608</orcidid><orcidid>https://orcid.org/0000-0001-9312-4966</orcidid><orcidid>https://orcid.org/0000-0002-1898-0321</orcidid><orcidid>https://orcid.org/0000-0001-6612-9323</orcidid><orcidid>https://orcid.org/0000-0002-8798-4369</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3376336 |
source | IEEE Electronic Library (IEL) |
subjects | Attention module Coal coal seam Data models Deep learning deep learning (DL) Dictionaries Discrete Wavelet Transform discrete wavelet transform (DWT) Discrete wavelet transforms Feature extraction Glossaries Matched pursuit Matching pursuit algorithms Reflection seismic strong reflection Separation Synthetic data Thin films Three dimensional models Training Wavelet transforms Well logs Workflow |
title | Separation and Suppression of Strong Reflections via a Multiscale Attention Deep Learning Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20and%20Suppression%20of%20Strong%20Reflections%20via%20a%20Multiscale%20Attention%20Deep%20Learning%20Model&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Shengjun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3376336&rft_dat=%3Cproquest_RIE%3E3031392955%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031392955&rft_id=info:pmid/&rft_ieee_id=10472884&rfr_iscdi=true |