Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images
Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Yang, Huizhang Lang, Ping Lu, Xingyu Chen, Shengyao Xi, Feng Liu, Zhong Yang, Jian |
description | Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm. |
doi_str_mv | 10.1109/TGRS.2024.3369021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3369021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443914</ieee_id><sourcerecordid>2947823107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnvvqRyzm2ORgI3bwuaZvMzC6pSSrs35syL7w6cHje8x4eAB4xmmGM-Mt-Xe5mBBE2ozTjiOArMMFpWiQoY-waTBDmWUIKTm7BnfdHhDBLcT4BprT14AN87WzzBXdD7XvRSLjSXZBOmwNU1sGlUrrR0gRYypP9ER20Cpai1RZuTOSUdNLElDZwdzbhUwbdwHkvXRicHEHh4OYkDtLfgxslOi8f_uYUfKyW-8Vbsn1fbxbzbdIQzkJCsoLyOhNEZUVNBW9VI0jGMSMKC0pxzhRGROS8UDwvVMMISgtB46IlLUMtnYLny93e2e9B-lAd7eBMrKxiQV4QilEeKXyhGme9d1JVvdMn4c4VRtWotRq1VqPW6k9rzDxdMlpK-Y9njMb_6C81a3PR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947823107</pqid></control><display><type>article</type><title>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Huizhang ; Lang, Ping ; Lu, Xingyu ; Chen, Shengyao ; Xi, Feng ; Liu, Zhong ; Yang, Jian</creator><creatorcontrib>Yang, Huizhang ; Lang, Ping ; Lu, Xingyu ; Chen, Shengyao ; Xi, Feng ; Liu, Zhong ; Yang, Jian</creatorcontrib><description>Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3369021</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Constant false alarm rate ; Entropy ; Filtering ; Filtration ; Image contrast ; Image filtering ; Interference ; Pixels ; Radar ; Radar imaging ; Radar polarimetry ; Radio ; Radio frequency interference ; Radio interference ; Removal ; Robustness ; SAR (radar) ; signal interference ; Spaceborne radar ; spectrum environment ; Subspaces ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</citedby><cites>FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</cites><orcidid>0000-0002-8540-8552 ; 0000-0002-0036-9233 ; 0000-0001-9725-088X ; 0000-0002-4170-3023 ; 0000-0001-9264-0723 ; 0000-0002-5940-1824 ; 0000-0002-4546-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Lang, Ping</creatorcontrib><creatorcontrib>Lu, Xingyu</creatorcontrib><creatorcontrib>Chen, Shengyao</creatorcontrib><creatorcontrib>Xi, Feng</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.</description><subject>Algorithms</subject><subject>Constant false alarm rate</subject><subject>Entropy</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Image contrast</subject><subject>Image filtering</subject><subject>Interference</subject><subject>Pixels</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Radio</subject><subject>Radio frequency interference</subject><subject>Radio interference</subject><subject>Removal</subject><subject>Robustness</subject><subject>SAR (radar)</subject><subject>signal interference</subject><subject>Spaceborne radar</subject><subject>spectrum environment</subject><subject>Subspaces</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnvvqRyzm2ORgI3bwuaZvMzC6pSSrs35syL7w6cHje8x4eAB4xmmGM-Mt-Xe5mBBE2ozTjiOArMMFpWiQoY-waTBDmWUIKTm7BnfdHhDBLcT4BprT14AN87WzzBXdD7XvRSLjSXZBOmwNU1sGlUrrR0gRYypP9ER20Cpai1RZuTOSUdNLElDZwdzbhUwbdwHkvXRicHEHh4OYkDtLfgxslOi8f_uYUfKyW-8Vbsn1fbxbzbdIQzkJCsoLyOhNEZUVNBW9VI0jGMSMKC0pxzhRGROS8UDwvVMMISgtB46IlLUMtnYLny93e2e9B-lAd7eBMrKxiQV4QilEeKXyhGme9d1JVvdMn4c4VRtWotRq1VqPW6k9rzDxdMlpK-Y9njMb_6C81a3PR</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Huizhang</creator><creator>Lang, Ping</creator><creator>Lu, Xingyu</creator><creator>Chen, Shengyao</creator><creator>Xi, Feng</creator><creator>Liu, Zhong</creator><creator>Yang, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8540-8552</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-4170-3023</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid><orcidid>https://orcid.org/0000-0002-5940-1824</orcidid><orcidid>https://orcid.org/0000-0002-4546-5843</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</title><author>Yang, Huizhang ; Lang, Ping ; Lu, Xingyu ; Chen, Shengyao ; Xi, Feng ; Liu, Zhong ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Constant false alarm rate</topic><topic>Entropy</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Image contrast</topic><topic>Image filtering</topic><topic>Interference</topic><topic>Pixels</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Radio</topic><topic>Radio frequency interference</topic><topic>Radio interference</topic><topic>Removal</topic><topic>Robustness</topic><topic>SAR (radar)</topic><topic>signal interference</topic><topic>Spaceborne radar</topic><topic>spectrum environment</topic><topic>Subspaces</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Lang, Ping</creatorcontrib><creatorcontrib>Lu, Xingyu</creatorcontrib><creatorcontrib>Chen, Shengyao</creatorcontrib><creatorcontrib>Xi, Feng</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Huizhang</au><au>Lang, Ping</au><au>Lu, Xingyu</au><au>Chen, Shengyao</au><au>Xi, Feng</au><au>Liu, Zhong</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3369021</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8540-8552</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-4170-3023</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid><orcidid>https://orcid.org/0000-0002-5940-1824</orcidid><orcidid>https://orcid.org/0000-0002-4546-5843</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3369021 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Constant false alarm rate Entropy Filtering Filtration Image contrast Image filtering Interference Pixels Radar Radar imaging Radar polarimetry Radio Radio frequency interference Radio interference Removal Robustness SAR (radar) signal interference Spaceborne radar spectrum environment Subspaces Synthetic aperture radar synthetic aperture radar (SAR) |
title | Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Block%20Subspace%20Filtering%20for%20Efficient%20Removal%20of%20Radio%20Interference%20in%20Synthetic%20Aperture%20Radar%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Huizhang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3369021&rft_dat=%3Cproquest_RIE%3E2947823107%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947823107&rft_id=info:pmid/&rft_ieee_id=10443914&rfr_iscdi=true |