Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images

Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12
Hauptverfasser: Yang, Huizhang, Lang, Ping, Lu, Xingyu, Chen, Shengyao, Xi, Feng, Liu, Zhong, Yang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Yang, Huizhang
Lang, Ping
Lu, Xingyu
Chen, Shengyao
Xi, Feng
Liu, Zhong
Yang, Jian
description Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.
doi_str_mv 10.1109/TGRS.2024.3369021
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3369021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443914</ieee_id><sourcerecordid>2947823107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnvvqRyzm2ORgI3bwuaZvMzC6pSSrs35syL7w6cHje8x4eAB4xmmGM-Mt-Xe5mBBE2ozTjiOArMMFpWiQoY-waTBDmWUIKTm7BnfdHhDBLcT4BprT14AN87WzzBXdD7XvRSLjSXZBOmwNU1sGlUrrR0gRYypP9ER20Cpai1RZuTOSUdNLElDZwdzbhUwbdwHkvXRicHEHh4OYkDtLfgxslOi8f_uYUfKyW-8Vbsn1fbxbzbdIQzkJCsoLyOhNEZUVNBW9VI0jGMSMKC0pxzhRGROS8UDwvVMMISgtB46IlLUMtnYLny93e2e9B-lAd7eBMrKxiQV4QilEeKXyhGme9d1JVvdMn4c4VRtWotRq1VqPW6k9rzDxdMlpK-Y9njMb_6C81a3PR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947823107</pqid></control><display><type>article</type><title>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Huizhang ; Lang, Ping ; Lu, Xingyu ; Chen, Shengyao ; Xi, Feng ; Liu, Zhong ; Yang, Jian</creator><creatorcontrib>Yang, Huizhang ; Lang, Ping ; Lu, Xingyu ; Chen, Shengyao ; Xi, Feng ; Liu, Zhong ; Yang, Jian</creatorcontrib><description>Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3369021</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Constant false alarm rate ; Entropy ; Filtering ; Filtration ; Image contrast ; Image filtering ; Interference ; Pixels ; Radar ; Radar imaging ; Radar polarimetry ; Radio ; Radio frequency interference ; Radio interference ; Removal ; Robustness ; SAR (radar) ; signal interference ; Spaceborne radar ; spectrum environment ; Subspaces ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</citedby><cites>FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</cites><orcidid>0000-0002-8540-8552 ; 0000-0002-0036-9233 ; 0000-0001-9725-088X ; 0000-0002-4170-3023 ; 0000-0001-9264-0723 ; 0000-0002-5940-1824 ; 0000-0002-4546-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Lang, Ping</creatorcontrib><creatorcontrib>Lu, Xingyu</creatorcontrib><creatorcontrib>Chen, Shengyao</creatorcontrib><creatorcontrib>Xi, Feng</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><title>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.</description><subject>Algorithms</subject><subject>Constant false alarm rate</subject><subject>Entropy</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Image contrast</subject><subject>Image filtering</subject><subject>Interference</subject><subject>Pixels</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Radar polarimetry</subject><subject>Radio</subject><subject>Radio frequency interference</subject><subject>Radio interference</subject><subject>Removal</subject><subject>Robustness</subject><subject>SAR (radar)</subject><subject>signal interference</subject><subject>Spaceborne radar</subject><subject>spectrum environment</subject><subject>Subspaces</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOKc_QPAi4HVnvvqRyzm2ORgI3bwuaZvMzC6pSSrs35syL7w6cHje8x4eAB4xmmGM-Mt-Xe5mBBE2ozTjiOArMMFpWiQoY-waTBDmWUIKTm7BnfdHhDBLcT4BprT14AN87WzzBXdD7XvRSLjSXZBOmwNU1sGlUrrR0gRYypP9ER20Cpai1RZuTOSUdNLElDZwdzbhUwbdwHkvXRicHEHh4OYkDtLfgxslOi8f_uYUfKyW-8Vbsn1fbxbzbdIQzkJCsoLyOhNEZUVNBW9VI0jGMSMKC0pxzhRGROS8UDwvVMMISgtB46IlLUMtnYLny93e2e9B-lAd7eBMrKxiQV4QilEeKXyhGme9d1JVvdMn4c4VRtWotRq1VqPW6k9rzDxdMlpK-Y9njMb_6C81a3PR</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yang, Huizhang</creator><creator>Lang, Ping</creator><creator>Lu, Xingyu</creator><creator>Chen, Shengyao</creator><creator>Xi, Feng</creator><creator>Liu, Zhong</creator><creator>Yang, Jian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8540-8552</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-4170-3023</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid><orcidid>https://orcid.org/0000-0002-5940-1824</orcidid><orcidid>https://orcid.org/0000-0002-4546-5843</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</title><author>Yang, Huizhang ; Lang, Ping ; Lu, Xingyu ; Chen, Shengyao ; Xi, Feng ; Liu, Zhong ; Yang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-26839b6a2f68b3a9dfca269142f1a33174f102a798f978fc42058a3a79d2d40d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Constant false alarm rate</topic><topic>Entropy</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Image contrast</topic><topic>Image filtering</topic><topic>Interference</topic><topic>Pixels</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Radar polarimetry</topic><topic>Radio</topic><topic>Radio frequency interference</topic><topic>Radio interference</topic><topic>Removal</topic><topic>Robustness</topic><topic>SAR (radar)</topic><topic>signal interference</topic><topic>Spaceborne radar</topic><topic>spectrum environment</topic><topic>Subspaces</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huizhang</creatorcontrib><creatorcontrib>Lang, Ping</creatorcontrib><creatorcontrib>Lu, Xingyu</creatorcontrib><creatorcontrib>Chen, Shengyao</creatorcontrib><creatorcontrib>Xi, Feng</creatorcontrib><creatorcontrib>Liu, Zhong</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Huizhang</au><au>Lang, Ping</au><au>Lu, Xingyu</au><au>Chen, Shengyao</au><au>Xi, Feng</au><au>Liu, Zhong</au><au>Yang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Due to spectrum sharing, spaceborne synthetic aperture radar (SAR) often experiences signal interference emitted by ground radio systems. Interference removal methods for SAR images are important measures to address this problem. Among these methods, block subspace filtering (BSF) has the advantage of removing various types of interference signals directly in single look complex (SLC) images. However, it assumes that the observation scene does not contain strong point scatterers, otherwise, BSF will have severe performance decline in terms of losing strong point scatterer intensity and causing horizontal or vertical black lines. This article proposes a robust version of BSF (RBSF), which can successfully overcome the above performance decline, thereby significantly improving the robustness of the algorithm. Specifically, RBSF uses a constant false alarm rate (CFAR) detector to detect and mask out strong scattering pixels from the SLC image. Then, BSF reconstructs the interference components from the SLC image with strong pixels being masked out, and finally subtracts them from the original SLC image. Moreover, we find that interference will reduce, to some extent, the image contrast and entropy. Based on this finding, we design an adaptive RBSF method which selects the subspace dimension parameter adaptively by means of optimizing the image contrast and entropy. Extensive experiments demonstrate that the RBSF algorithm achieves significant performance improvement over the original BSF algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3369021</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8540-8552</orcidid><orcidid>https://orcid.org/0000-0002-0036-9233</orcidid><orcidid>https://orcid.org/0000-0001-9725-088X</orcidid><orcidid>https://orcid.org/0000-0002-4170-3023</orcidid><orcidid>https://orcid.org/0000-0001-9264-0723</orcidid><orcidid>https://orcid.org/0000-0002-5940-1824</orcidid><orcidid>https://orcid.org/0000-0002-4546-5843</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3369021
source IEEE Electronic Library (IEL)
subjects Algorithms
Constant false alarm rate
Entropy
Filtering
Filtration
Image contrast
Image filtering
Interference
Pixels
Radar
Radar imaging
Radar polarimetry
Radio
Radio frequency interference
Radio interference
Removal
Robustness
SAR (radar)
signal interference
Spaceborne radar
spectrum environment
Subspaces
Synthetic aperture radar
synthetic aperture radar (SAR)
title Robust Block Subspace Filtering for Efficient Removal of Radio Interference in Synthetic Aperture Radar Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Block%20Subspace%20Filtering%20for%20Efficient%20Removal%20of%20Radio%20Interference%20in%20Synthetic%20Aperture%20Radar%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Huizhang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3369021&rft_dat=%3Cproquest_RIE%3E2947823107%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947823107&rft_id=info:pmid/&rft_ieee_id=10443914&rfr_iscdi=true