ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image
Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Chen, Yuyun Yuan, Jieyu Cai, Zhanchuan |
description | Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the a and b channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement. |
doi_str_mv | 10.1109/TGRS.2023.3339216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3339216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10341309</ieee_id><sourcerecordid>2904396688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-734c326bd8a75d7b6d877a952c4b06cb08c1caa9928df2cfa30c8fcdff7f2613</originalsourceid><addsrcrecordid>eNpNkF1LwzAYhYMoOKc_QPAi4HVnvpom3pUy52AguHkd0nxsHWta06j47-3YLrx5z81zzgsPAPcYzTBG8mmzeF_PCCJ0RimVBPMLMMF5LjLEGbsEE4Qlz4iQ5BrcDMMeIcxyXEzAuqyq-TMsAyyt7lPz7WDVHbo43rZ3YdCp6QLUwcJ52OlgXOtCguVh28Um7VroR_QjWBd_dHIRLlu9dbfgyuvD4O7OOQWbl_mmes1Wb4tlVa4yQxhPWUGZoYTXVugit0XNrSgKLXNiWI24qZEw2GgtJRHWE-M1RUZ4Y70vPOGYTsHjabaP3eeXG5Lad18xjB8VkYhRybkQI4VPlIndMETnVR-bVsdfhZE6qlNHdeqoTp3VjZ2HU6dxzv3jKcMUSfoH3KVqUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904396688</pqid></control><display><type>article</type><title>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuyun ; Yuan, Jieyu ; Cai, Zhanchuan</creator><creatorcontrib>Chen, Yuyun ; Yuan, Jieyu ; Cai, Zhanchuan</creatorcontrib><description><![CDATA[Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the <inline-formula> <tex-math notation="LaTeX">a </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3339216</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive color compensation (ACC) ; Algorithms ; Channels ; Color ; color channels ; Colour ; Compensation ; Contours ; Deep learning ; Green products ; Histograms ; Image color analysis ; Image enhancement ; Image processing ; Image restoration ; Restoration ; Tuning ; Underwater ; underwater image enhancement</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-734c326bd8a75d7b6d877a952c4b06cb08c1caa9928df2cfa30c8fcdff7f2613</cites><orcidid>0000-0002-4507-2572 ; 0000-0002-9736-0920 ; 0000-0002-6954-7691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10341309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10341309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuyun</creatorcontrib><creatorcontrib>Yuan, Jieyu</creatorcontrib><creatorcontrib>Cai, Zhanchuan</creatorcontrib><title>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the <inline-formula> <tex-math notation="LaTeX">a </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.]]></description><subject>Adaptive color compensation (ACC)</subject><subject>Algorithms</subject><subject>Channels</subject><subject>Color</subject><subject>color channels</subject><subject>Colour</subject><subject>Compensation</subject><subject>Contours</subject><subject>Deep learning</subject><subject>Green products</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Restoration</subject><subject>Tuning</subject><subject>Underwater</subject><subject>underwater image enhancement</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAYhYMoOKc_QPAi4HVnvpom3pUy52AguHkd0nxsHWta06j47-3YLrx5z81zzgsPAPcYzTBG8mmzeF_PCCJ0RimVBPMLMMF5LjLEGbsEE4Qlz4iQ5BrcDMMeIcxyXEzAuqyq-TMsAyyt7lPz7WDVHbo43rZ3YdCp6QLUwcJ52OlgXOtCguVh28Um7VroR_QjWBd_dHIRLlu9dbfgyuvD4O7OOQWbl_mmes1Wb4tlVa4yQxhPWUGZoYTXVugit0XNrSgKLXNiWI24qZEw2GgtJRHWE-M1RUZ4Y70vPOGYTsHjabaP3eeXG5Lad18xjB8VkYhRybkQI4VPlIndMETnVR-bVsdfhZE6qlNHdeqoTp3VjZ2HU6dxzv3jKcMUSfoH3KVqUA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Yuyun</creator><creator>Yuan, Jieyu</creator><creator>Cai, Zhanchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4507-2572</orcidid><orcidid>https://orcid.org/0000-0002-9736-0920</orcidid><orcidid>https://orcid.org/0000-0002-6954-7691</orcidid></search><sort><creationdate>2024</creationdate><title>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</title><author>Chen, Yuyun ; Yuan, Jieyu ; Cai, Zhanchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-734c326bd8a75d7b6d877a952c4b06cb08c1caa9928df2cfa30c8fcdff7f2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive color compensation (ACC)</topic><topic>Algorithms</topic><topic>Channels</topic><topic>Color</topic><topic>color channels</topic><topic>Colour</topic><topic>Compensation</topic><topic>Contours</topic><topic>Deep learning</topic><topic>Green products</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Restoration</topic><topic>Tuning</topic><topic>Underwater</topic><topic>underwater image enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuyun</creatorcontrib><creatorcontrib>Yuan, Jieyu</creatorcontrib><creatorcontrib>Cai, Zhanchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuyun</au><au>Yuan, Jieyu</au><au>Cai, Zhanchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the <inline-formula> <tex-math notation="LaTeX">a </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3339216</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4507-2572</orcidid><orcidid>https://orcid.org/0000-0002-9736-0920</orcidid><orcidid>https://orcid.org/0000-0002-6954-7691</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2023_3339216 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive color compensation (ACC) Algorithms Channels Color color channels Colour Compensation Contours Deep learning Green products Histograms Image color analysis Image enhancement Image processing Image restoration Restoration Tuning Underwater underwater image enhancement |
title | ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCE:%20An%20Adaptive%20Color%20Compensation%20and%20Enhancement%20Algorithm%20for%20Underwater%20Image&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yuyun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3339216&rft_dat=%3Cproquest_RIE%3E2904396688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904396688&rft_id=info:pmid/&rft_ieee_id=10341309&rfr_iscdi=true |