ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image

Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Hauptverfasser: Chen, Yuyun, Yuan, Jieyu, Cai, Zhanchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Chen, Yuyun
Yuan, Jieyu
Cai, Zhanchuan
description Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the a and b channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.
doi_str_mv 10.1109/TGRS.2023.3339216
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3339216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10341309</ieee_id><sourcerecordid>2904396688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-734c326bd8a75d7b6d877a952c4b06cb08c1caa9928df2cfa30c8fcdff7f2613</originalsourceid><addsrcrecordid>eNpNkF1LwzAYhYMoOKc_QPAi4HVnvpom3pUy52AguHkd0nxsHWta06j47-3YLrx5z81zzgsPAPcYzTBG8mmzeF_PCCJ0RimVBPMLMMF5LjLEGbsEE4Qlz4iQ5BrcDMMeIcxyXEzAuqyq-TMsAyyt7lPz7WDVHbo43rZ3YdCp6QLUwcJ52OlgXOtCguVh28Um7VroR_QjWBd_dHIRLlu9dbfgyuvD4O7OOQWbl_mmes1Wb4tlVa4yQxhPWUGZoYTXVugit0XNrSgKLXNiWI24qZEw2GgtJRHWE-M1RUZ4Y70vPOGYTsHjabaP3eeXG5Lad18xjB8VkYhRybkQI4VPlIndMETnVR-bVsdfhZE6qlNHdeqoTp3VjZ2HU6dxzv3jKcMUSfoH3KVqUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904396688</pqid></control><display><type>article</type><title>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yuyun ; Yuan, Jieyu ; Cai, Zhanchuan</creator><creatorcontrib>Chen, Yuyun ; Yuan, Jieyu ; Cai, Zhanchuan</creatorcontrib><description><![CDATA[Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the <inline-formula> <tex-math notation="LaTeX">a </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3339216</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive color compensation (ACC) ; Algorithms ; Channels ; Color ; color channels ; Colour ; Compensation ; Contours ; Deep learning ; Green products ; Histograms ; Image color analysis ; Image enhancement ; Image processing ; Image restoration ; Restoration ; Tuning ; Underwater ; underwater image enhancement</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-734c326bd8a75d7b6d877a952c4b06cb08c1caa9928df2cfa30c8fcdff7f2613</cites><orcidid>0000-0002-4507-2572 ; 0000-0002-9736-0920 ; 0000-0002-6954-7691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10341309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10341309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yuyun</creatorcontrib><creatorcontrib>Yuan, Jieyu</creatorcontrib><creatorcontrib>Cai, Zhanchuan</creatorcontrib><title>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the <inline-formula> <tex-math notation="LaTeX">a </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.]]></description><subject>Adaptive color compensation (ACC)</subject><subject>Algorithms</subject><subject>Channels</subject><subject>Color</subject><subject>color channels</subject><subject>Colour</subject><subject>Compensation</subject><subject>Contours</subject><subject>Deep learning</subject><subject>Green products</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Restoration</subject><subject>Tuning</subject><subject>Underwater</subject><subject>underwater image enhancement</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAYhYMoOKc_QPAi4HVnvpom3pUy52AguHkd0nxsHWta06j47-3YLrx5z81zzgsPAPcYzTBG8mmzeF_PCCJ0RimVBPMLMMF5LjLEGbsEE4Qlz4iQ5BrcDMMeIcxyXEzAuqyq-TMsAyyt7lPz7WDVHbo43rZ3YdCp6QLUwcJ52OlgXOtCguVh28Um7VroR_QjWBd_dHIRLlu9dbfgyuvD4O7OOQWbl_mmes1Wb4tlVa4yQxhPWUGZoYTXVugit0XNrSgKLXNiWI24qZEw2GgtJRHWE-M1RUZ4Y70vPOGYTsHjabaP3eeXG5Lad18xjB8VkYhRybkQI4VPlIndMETnVR-bVsdfhZE6qlNHdeqoTp3VjZ2HU6dxzv3jKcMUSfoH3KVqUA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Yuyun</creator><creator>Yuan, Jieyu</creator><creator>Cai, Zhanchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4507-2572</orcidid><orcidid>https://orcid.org/0000-0002-9736-0920</orcidid><orcidid>https://orcid.org/0000-0002-6954-7691</orcidid></search><sort><creationdate>2024</creationdate><title>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</title><author>Chen, Yuyun ; Yuan, Jieyu ; Cai, Zhanchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-734c326bd8a75d7b6d877a952c4b06cb08c1caa9928df2cfa30c8fcdff7f2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive color compensation (ACC)</topic><topic>Algorithms</topic><topic>Channels</topic><topic>Color</topic><topic>color channels</topic><topic>Colour</topic><topic>Compensation</topic><topic>Contours</topic><topic>Deep learning</topic><topic>Green products</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Restoration</topic><topic>Tuning</topic><topic>Underwater</topic><topic>underwater image enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuyun</creatorcontrib><creatorcontrib>Yuan, Jieyu</creatorcontrib><creatorcontrib>Cai, Zhanchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yuyun</au><au>Yuan, Jieyu</au><au>Cai, Zhanchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Underwater images often suffer from significant information loss in the red color channel, resulting in a predominantly bluish or greenish tone. Existing enhancement methods struggle to address this issue due to uniform enhancement applied to the bluish and greenish channels, resulting in overcompensation or under-compensation in the red channel. To address these challenges and achieve a more natural color restoration in underwater images, we propose the adaptive color compensation and enhancement (ACCE) algorithm. The ACCE algorithm comprises several essential steps. Initially, to recover the loss of red channel information more effectively, we divide the images into bluish and greenish components for preliminary color compensation (PCC) in the RGB color space. Subsequently, we introduce a novel minimum color loss (MCL) constraint to regulate the PCC, ensuring balanced histogram distributions across the RGB channels. Furthermore, for improved color balance in the enhanced underwater image, we design the fine-tuning color compensation (FCC) to the <inline-formula> <tex-math notation="LaTeX">a </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">b </tex-math></inline-formula> channels of the CIELAB color space. Ultimately, we employ the Contour Bougie (CB) enhancement algorithm to restore contour details in underwater images. Experimental results validate the superiority of the proposed ACCE algorithm over state-of-the-art methods, as demonstrated through qualitative and quantitative comparisons. In addition, ACCE exhibits promising generalization and potential for broader applications, encompassing tasks such as dehazing and lowlight image enhancement.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3339216</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4507-2572</orcidid><orcidid>https://orcid.org/0000-0002-9736-0920</orcidid><orcidid>https://orcid.org/0000-0002-6954-7691</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2023_3339216
source IEEE Electronic Library (IEL)
subjects Adaptive color compensation (ACC)
Algorithms
Channels
Color
color channels
Colour
Compensation
Contours
Deep learning
Green products
Histograms
Image color analysis
Image enhancement
Image processing
Image restoration
Restoration
Tuning
Underwater
underwater image enhancement
title ACCE: An Adaptive Color Compensation and Enhancement Algorithm for Underwater Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ACCE:%20An%20Adaptive%20Color%20Compensation%20and%20Enhancement%20Algorithm%20for%20Underwater%20Image&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Yuyun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3339216&rft_dat=%3Cproquest_RIE%3E2904396688%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904396688&rft_id=info:pmid/&rft_ieee_id=10341309&rfr_iscdi=true