Small-Scale Fracture Detection via Anisotropic Bayesian Ant-Tracking Colony Optimization Driven by Azimuthal Seismic Data
Fractures play a very important role in hydrocarbon accumulation and migration as well as hydraulic fracturing. Small-scale fractures contain dense sets of fractures that extend from meters to tens of meters in length. They are at risk resulting in drilling loss and fracturing disturbance. It is the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Li, Shichang Zhao, Yang Xian, Chenggang Liang, Xing Zhang, Jiehui Qiao, Qiya Yan, Lanlan Shen, Yinhao Cao, Huan |
description | Fractures play a very important role in hydrocarbon accumulation and migration as well as hydraulic fracturing. Small-scale fractures contain dense sets of fractures that extend from meters to tens of meters in length. They are at risk resulting in drilling loss and fracturing disturbance. It is therefore vital to build a comprehensive fracture system; in particular, a dedicated description of small-scale fractures is desired. Conventional large-scale fracture identification mostly depends on the poststack seismic attributes. Ant tracking places ants as seeds on discontinuous anomalies to locate fracture areas. Taking advantage of wide-azimuth prestack seismic, we design an azimuthal anisotropy-driven ant-tracking scheme for small-scale fracture detection. First, we fit ellipses to six azimuthal sectors to obtain fracture intensity and strike. Second, we propose an anisotropic Bayes ant colony optimization (ani-Bayes ACO). The novel algorithm is built on an anisotropic transfer mechanism via a Bayesian framework to optimize the detection of small-scale fractures. Specifically, the computed fracture intensity and strike automatically allocate the range of ants' detection. The anisotropic transfer mechanism strengthens the detection in the fracture-dense zone and constrains ants to track the geometric structure along the fracture. Finally, we combine conventional ant tracking to construct an across-scale fracture volume. The bandwidth of the resultant fracture system has been enhanced by incorporating the fracture intensity and geometry into tracing. This new theme may accelerate the automated interpretation by simultaneously characterizing the across-scale fractures and fracture zones. The application of field data in the Sichuan Basin, China, demonstrated the robustness of our proposed scheme. |
doi_str_mv | 10.1109/TGRS.2023.3317313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3317313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10256247</ieee_id><sourcerecordid>2881500034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f1ba8428f3fb620dca624d023a41a67c5c4efa9b26aec19e84bd5f5d5b8747583</originalsourceid><addsrcrecordid>eNpNkMtOwkAUhidGExF9ABMXk7guzrWdLhEETUhIBNfN6TDVwV5wZkpSnt4iLFyd5OT7z-VD6J6SEaUkfVrP31cjRhgfcU4TTvkFGlApVURiIS7RgNA0jphK2TW68X5LCBWSJgPUrSooy2iloTR45kCH1hk8NcHoYJsa7y3gcW19E1yzsxo_Q2e8hbpvhmjd89-2_sSTpmzqDi93wVb2AH_JqbN7U-O8w-ODrdrwBSVeGeurfsoUAtyiqwJKb-7OdYg-Zi_ryWu0WM7fJuNFpJmIQ1TQHJRgquBFHjOy0RAzsekfBUEhTrTUwhSQ5iwGo2lqlMg3spAbmatEJFLxIXo8zd255qc1PmTbpnV1vzJjSlFJCOGip-iJ0q7x3pki2zlbgesySrKj4exoODsazs6G-8zDKWONMf94JvsTE_4LGox5Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881500034</pqid></control><display><type>article</type><title>Small-Scale Fracture Detection via Anisotropic Bayesian Ant-Tracking Colony Optimization Driven by Azimuthal Seismic Data</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Shichang ; Zhao, Yang ; Xian, Chenggang ; Liang, Xing ; Zhang, Jiehui ; Qiao, Qiya ; Yan, Lanlan ; Shen, Yinhao ; Cao, Huan</creator><creatorcontrib>Li, Shichang ; Zhao, Yang ; Xian, Chenggang ; Liang, Xing ; Zhang, Jiehui ; Qiao, Qiya ; Yan, Lanlan ; Shen, Yinhao ; Cao, Huan</creatorcontrib><description>Fractures play a very important role in hydrocarbon accumulation and migration as well as hydraulic fracturing. Small-scale fractures contain dense sets of fractures that extend from meters to tens of meters in length. They are at risk resulting in drilling loss and fracturing disturbance. It is therefore vital to build a comprehensive fracture system; in particular, a dedicated description of small-scale fractures is desired. Conventional large-scale fracture identification mostly depends on the poststack seismic attributes. Ant tracking places ants as seeds on discontinuous anomalies to locate fracture areas. Taking advantage of wide-azimuth prestack seismic, we design an azimuthal anisotropy-driven ant-tracking scheme for small-scale fracture detection. First, we fit ellipses to six azimuthal sectors to obtain fracture intensity and strike. Second, we propose an anisotropic Bayes ant colony optimization (ani-Bayes ACO). The novel algorithm is built on an anisotropic transfer mechanism via a Bayesian framework to optimize the detection of small-scale fractures. Specifically, the computed fracture intensity and strike automatically allocate the range of ants' detection. The anisotropic transfer mechanism strengthens the detection in the fracture-dense zone and constrains ants to track the geometric structure along the fracture. Finally, we combine conventional ant tracking to construct an across-scale fracture volume. The bandwidth of the resultant fracture system has been enhanced by incorporating the fracture intensity and geometry into tracing. This new theme may accelerate the automated interpretation by simultaneously characterizing the across-scale fractures and fracture zones. The application of field data in the Sichuan Basin, China, demonstrated the robustness of our proposed scheme.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3317313</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anisotropic magnetoresistance ; Anisotropy ; Anomalies ; Ant colony optimization ; Ant colony optimization (ACO) ; Azimuth ; azimuthal anisotropy ; Bayes principle ; Bayesian analysis ; Bayesian theory ; curvature ; Detection ; Drilling ; fracture detection ; Fracture zones ; Hydraulic fracturing ; Impedance ; Meters ; Probability theory ; Reservoirs ; Seismic data ; Surface cracks ; Surface impedance ; Tracking</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f1ba8428f3fb620dca624d023a41a67c5c4efa9b26aec19e84bd5f5d5b8747583</cites><orcidid>0000-0003-1204-4265 ; 0009-0009-0567-8818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10256247$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10256247$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Shichang</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Xian, Chenggang</creatorcontrib><creatorcontrib>Liang, Xing</creatorcontrib><creatorcontrib>Zhang, Jiehui</creatorcontrib><creatorcontrib>Qiao, Qiya</creatorcontrib><creatorcontrib>Yan, Lanlan</creatorcontrib><creatorcontrib>Shen, Yinhao</creatorcontrib><creatorcontrib>Cao, Huan</creatorcontrib><title>Small-Scale Fracture Detection via Anisotropic Bayesian Ant-Tracking Colony Optimization Driven by Azimuthal Seismic Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Fractures play a very important role in hydrocarbon accumulation and migration as well as hydraulic fracturing. Small-scale fractures contain dense sets of fractures that extend from meters to tens of meters in length. They are at risk resulting in drilling loss and fracturing disturbance. It is therefore vital to build a comprehensive fracture system; in particular, a dedicated description of small-scale fractures is desired. Conventional large-scale fracture identification mostly depends on the poststack seismic attributes. Ant tracking places ants as seeds on discontinuous anomalies to locate fracture areas. Taking advantage of wide-azimuth prestack seismic, we design an azimuthal anisotropy-driven ant-tracking scheme for small-scale fracture detection. First, we fit ellipses to six azimuthal sectors to obtain fracture intensity and strike. Second, we propose an anisotropic Bayes ant colony optimization (ani-Bayes ACO). The novel algorithm is built on an anisotropic transfer mechanism via a Bayesian framework to optimize the detection of small-scale fractures. Specifically, the computed fracture intensity and strike automatically allocate the range of ants' detection. The anisotropic transfer mechanism strengthens the detection in the fracture-dense zone and constrains ants to track the geometric structure along the fracture. Finally, we combine conventional ant tracking to construct an across-scale fracture volume. The bandwidth of the resultant fracture system has been enhanced by incorporating the fracture intensity and geometry into tracing. This new theme may accelerate the automated interpretation by simultaneously characterizing the across-scale fractures and fracture zones. The application of field data in the Sichuan Basin, China, demonstrated the robustness of our proposed scheme.</description><subject>Algorithms</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Anomalies</subject><subject>Ant colony optimization</subject><subject>Ant colony optimization (ACO)</subject><subject>Azimuth</subject><subject>azimuthal anisotropy</subject><subject>Bayes principle</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>curvature</subject><subject>Detection</subject><subject>Drilling</subject><subject>fracture detection</subject><subject>Fracture zones</subject><subject>Hydraulic fracturing</subject><subject>Impedance</subject><subject>Meters</subject><subject>Probability theory</subject><subject>Reservoirs</subject><subject>Seismic data</subject><subject>Surface cracks</subject><subject>Surface impedance</subject><subject>Tracking</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwkAUhidGExF9ABMXk7guzrWdLhEETUhIBNfN6TDVwV5wZkpSnt4iLFyd5OT7z-VD6J6SEaUkfVrP31cjRhgfcU4TTvkFGlApVURiIS7RgNA0jphK2TW68X5LCBWSJgPUrSooy2iloTR45kCH1hk8NcHoYJsa7y3gcW19E1yzsxo_Q2e8hbpvhmjd89-2_sSTpmzqDi93wVb2AH_JqbN7U-O8w-ODrdrwBSVeGeurfsoUAtyiqwJKb-7OdYg-Zi_ryWu0WM7fJuNFpJmIQ1TQHJRgquBFHjOy0RAzsekfBUEhTrTUwhSQ5iwGo2lqlMg3spAbmatEJFLxIXo8zd255qc1PmTbpnV1vzJjSlFJCOGip-iJ0q7x3pki2zlbgesySrKj4exoODsazs6G-8zDKWONMf94JvsTE_4LGox5Lg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Li, Shichang</creator><creator>Zhao, Yang</creator><creator>Xian, Chenggang</creator><creator>Liang, Xing</creator><creator>Zhang, Jiehui</creator><creator>Qiao, Qiya</creator><creator>Yan, Lanlan</creator><creator>Shen, Yinhao</creator><creator>Cao, Huan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1204-4265</orcidid><orcidid>https://orcid.org/0009-0009-0567-8818</orcidid></search><sort><creationdate>2023</creationdate><title>Small-Scale Fracture Detection via Anisotropic Bayesian Ant-Tracking Colony Optimization Driven by Azimuthal Seismic Data</title><author>Li, Shichang ; Zhao, Yang ; Xian, Chenggang ; Liang, Xing ; Zhang, Jiehui ; Qiao, Qiya ; Yan, Lanlan ; Shen, Yinhao ; Cao, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f1ba8428f3fb620dca624d023a41a67c5c4efa9b26aec19e84bd5f5d5b8747583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Anomalies</topic><topic>Ant colony optimization</topic><topic>Ant colony optimization (ACO)</topic><topic>Azimuth</topic><topic>azimuthal anisotropy</topic><topic>Bayes principle</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>curvature</topic><topic>Detection</topic><topic>Drilling</topic><topic>fracture detection</topic><topic>Fracture zones</topic><topic>Hydraulic fracturing</topic><topic>Impedance</topic><topic>Meters</topic><topic>Probability theory</topic><topic>Reservoirs</topic><topic>Seismic data</topic><topic>Surface cracks</topic><topic>Surface impedance</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shichang</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Xian, Chenggang</creatorcontrib><creatorcontrib>Liang, Xing</creatorcontrib><creatorcontrib>Zhang, Jiehui</creatorcontrib><creatorcontrib>Qiao, Qiya</creatorcontrib><creatorcontrib>Yan, Lanlan</creatorcontrib><creatorcontrib>Shen, Yinhao</creatorcontrib><creatorcontrib>Cao, Huan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Shichang</au><au>Zhao, Yang</au><au>Xian, Chenggang</au><au>Liang, Xing</au><au>Zhang, Jiehui</au><au>Qiao, Qiya</au><au>Yan, Lanlan</au><au>Shen, Yinhao</au><au>Cao, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Scale Fracture Detection via Anisotropic Bayesian Ant-Tracking Colony Optimization Driven by Azimuthal Seismic Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Fractures play a very important role in hydrocarbon accumulation and migration as well as hydraulic fracturing. Small-scale fractures contain dense sets of fractures that extend from meters to tens of meters in length. They are at risk resulting in drilling loss and fracturing disturbance. It is therefore vital to build a comprehensive fracture system; in particular, a dedicated description of small-scale fractures is desired. Conventional large-scale fracture identification mostly depends on the poststack seismic attributes. Ant tracking places ants as seeds on discontinuous anomalies to locate fracture areas. Taking advantage of wide-azimuth prestack seismic, we design an azimuthal anisotropy-driven ant-tracking scheme for small-scale fracture detection. First, we fit ellipses to six azimuthal sectors to obtain fracture intensity and strike. Second, we propose an anisotropic Bayes ant colony optimization (ani-Bayes ACO). The novel algorithm is built on an anisotropic transfer mechanism via a Bayesian framework to optimize the detection of small-scale fractures. Specifically, the computed fracture intensity and strike automatically allocate the range of ants' detection. The anisotropic transfer mechanism strengthens the detection in the fracture-dense zone and constrains ants to track the geometric structure along the fracture. Finally, we combine conventional ant tracking to construct an across-scale fracture volume. The bandwidth of the resultant fracture system has been enhanced by incorporating the fracture intensity and geometry into tracing. This new theme may accelerate the automated interpretation by simultaneously characterizing the across-scale fractures and fracture zones. The application of field data in the Sichuan Basin, China, demonstrated the robustness of our proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3317313</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1204-4265</orcidid><orcidid>https://orcid.org/0009-0009-0567-8818</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2023_3317313 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anisotropic magnetoresistance Anisotropy Anomalies Ant colony optimization Ant colony optimization (ACO) Azimuth azimuthal anisotropy Bayes principle Bayesian analysis Bayesian theory curvature Detection Drilling fracture detection Fracture zones Hydraulic fracturing Impedance Meters Probability theory Reservoirs Seismic data Surface cracks Surface impedance Tracking |
title | Small-Scale Fracture Detection via Anisotropic Bayesian Ant-Tracking Colony Optimization Driven by Azimuthal Seismic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Scale%20Fracture%20Detection%20via%20Anisotropic%20Bayesian%20Ant-Tracking%20Colony%20Optimization%20Driven%20by%20Azimuthal%20Seismic%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Shichang&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3317313&rft_dat=%3Cproquest_RIE%3E2881500034%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2881500034&rft_id=info:pmid/&rft_ieee_id=10256247&rfr_iscdi=true |