R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor
Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Zhu, Bai Yang, Chao Dai, Jinkun Fan, Jianwei Qin, Yao Ye, Yuanxin |
description | Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods. |
doi_str_mv | 10.1109/TGRS.2023.3264610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3264610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10092838</ieee_id><sourcerecordid>2803033063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYMoOP48gOAi4LrjTdKmiTtRRwVFGHVdbttbjcw0Y5IO-BC-sx1mFq7ugfOdc-EwdiZgKgTYy7f7-etUglRTJXWuBeyxiSgKk4HO8302AWF1Jo2Vh-woxi8AkReinLDfuZzdyis-w5g49i2f-3oY5TOm5tP1H9x3_HlYJLf0LS74nJY-EX-lPm7MxyV-UORrh6OzIkxYL4jPRjEE4reUqEk-7HoTJuf7zPVrDA779I-LTXCrkTxhBx0uIp3u7jF7n9293TxkTy_3jzfXT1kjbZ6y1jQItra1wLKk0upaamvyvKwNtFqBbUVHBYIusGnLUmtooZOFtWgN5QjqmF1se1fBfw8UU_Xlh9CPLytpQIFSoNVIiS3VBB9joK5aBbfE8FMJqDarV5vVq83q1W71MXO-zTgi-seDlUYZ9Qd7PX7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803033063</pqid></control><display><type>article</type><title>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Bai ; Yang, Chao ; Dai, Jinkun ; Fan, Jianwei ; Qin, Yao ; Ye, Yuanxin</creator><creatorcontrib>Zhu, Bai ; Yang, Chao ; Dai, Jinkun ; Fan, Jianwei ; Qin, Yao ; Ye, Yuanxin</creatorcontrib><description>Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3264610</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autocorrelation ; Construction ; Detectors ; Feature extraction ; Indexes ; Invariants ; MALG ; Matching ; Measurement ; Methods ; Morlet wavelet ; Multimodal image matching ; Optical imaging ; Pipelines ; R<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 FD<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 ; Radiation ; Radiation tolerance ; Remote sensing ; Reproducibility ; Resistance ; RMLG ; Robustness ; Rotation ; Rotation-invariant Maximum Index Map (RMIM) ; Sensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</citedby><cites>FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</cites><orcidid>0000-0002-3251-2452 ; 0000-0002-3777-6334 ; 0000-0002-9793-1092 ; 0000-0001-6843-6722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10092838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10092838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Bai</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Dai, Jinkun</creatorcontrib><creatorcontrib>Fan, Jianwei</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ye, Yuanxin</creatorcontrib><title>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.</description><subject>Autocorrelation</subject><subject>Construction</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Indexes</subject><subject>Invariants</subject><subject>MALG</subject><subject>Matching</subject><subject>Measurement</subject><subject>Methods</subject><subject>Morlet wavelet</subject><subject>Multimodal image matching</subject><subject>Optical imaging</subject><subject>Pipelines</subject><subject>R<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 FD<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Remote sensing</subject><subject>Reproducibility</subject><subject>Resistance</subject><subject>RMLG</subject><subject>Robustness</subject><subject>Rotation</subject><subject>Rotation-invariant Maximum Index Map (RMIM)</subject><subject>Sensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KxDAUhYMoOP48gOAi4LrjTdKmiTtRRwVFGHVdbttbjcw0Y5IO-BC-sx1mFq7ugfOdc-EwdiZgKgTYy7f7-etUglRTJXWuBeyxiSgKk4HO8302AWF1Jo2Vh-woxi8AkReinLDfuZzdyis-w5g49i2f-3oY5TOm5tP1H9x3_HlYJLf0LS74nJY-EX-lPm7MxyV-UORrh6OzIkxYL4jPRjEE4reUqEk-7HoTJuf7zPVrDA779I-LTXCrkTxhBx0uIp3u7jF7n9293TxkTy_3jzfXT1kjbZ6y1jQItra1wLKk0upaamvyvKwNtFqBbUVHBYIusGnLUmtooZOFtWgN5QjqmF1se1fBfw8UU_Xlh9CPLytpQIFSoNVIiS3VBB9joK5aBbfE8FMJqDarV5vVq83q1W71MXO-zTgi-seDlUYZ9Qd7PX7n</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhu, Bai</creator><creator>Yang, Chao</creator><creator>Dai, Jinkun</creator><creator>Fan, Jianwei</creator><creator>Qin, Yao</creator><creator>Ye, Yuanxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3251-2452</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-9793-1092</orcidid><orcidid>https://orcid.org/0000-0001-6843-6722</orcidid></search><sort><creationdate>20230101</creationdate><title>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</title><author>Zhu, Bai ; Yang, Chao ; Dai, Jinkun ; Fan, Jianwei ; Qin, Yao ; Ye, Yuanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autocorrelation</topic><topic>Construction</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Indexes</topic><topic>Invariants</topic><topic>MALG</topic><topic>Matching</topic><topic>Measurement</topic><topic>Methods</topic><topic>Morlet wavelet</topic><topic>Multimodal image matching</topic><topic>Optical imaging</topic><topic>Pipelines</topic><topic>R<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 FD<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Remote sensing</topic><topic>Reproducibility</topic><topic>Resistance</topic><topic>RMLG</topic><topic>Robustness</topic><topic>Rotation</topic><topic>Rotation-invariant Maximum Index Map (RMIM)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Bai</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Dai, Jinkun</creatorcontrib><creatorcontrib>Fan, Jianwei</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ye, Yuanxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Bai</au><au>Yang, Chao</au><au>Dai, Jinkun</au><au>Fan, Jianwei</au><au>Qin, Yao</au><au>Ye, Yuanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3264610</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3251-2452</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-9793-1092</orcidid><orcidid>https://orcid.org/0000-0001-6843-6722</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2023_3264610 |
source | IEEE Electronic Library (IEL) |
subjects | Autocorrelation Construction Detectors Feature extraction Indexes Invariants MALG Matching Measurement Methods Morlet wavelet Multimodal image matching Optical imaging Pipelines R<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 FD<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 Radiation Radiation tolerance Remote sensing Reproducibility Resistance RMLG Robustness Rotation Rotation-invariant Maximum Index Map (RMIM) Sensors |
title | R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=R2FD2:%20Fast%20and%20Robust%20Matching%20of%20Multimodal%20Remote%20Sensing%20Images%20via%20Repeatable%20Feature%20Detector%20and%20Rotation-invariant%20Feature%20Descriptor&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhu,%20Bai&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3264610&rft_dat=%3Cproquest_RIE%3E2803033063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803033063&rft_id=info:pmid/&rft_ieee_id=10092838&rfr_iscdi=true |