R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor

Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Zhu, Bai, Yang, Chao, Dai, Jinkun, Fan, Jianwei, Qin, Yao, Ye, Yuanxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Zhu, Bai
Yang, Chao
Dai, Jinkun
Fan, Jianwei
Qin, Yao
Ye, Yuanxin
description Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.
doi_str_mv 10.1109/TGRS.2023.3264610
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3264610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10092838</ieee_id><sourcerecordid>2803033063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYMoOP48gOAi4LrjTdKmiTtRRwVFGHVdbttbjcw0Y5IO-BC-sx1mFq7ugfOdc-EwdiZgKgTYy7f7-etUglRTJXWuBeyxiSgKk4HO8302AWF1Jo2Vh-woxi8AkReinLDfuZzdyis-w5g49i2f-3oY5TOm5tP1H9x3_HlYJLf0LS74nJY-EX-lPm7MxyV-UORrh6OzIkxYL4jPRjEE4reUqEk-7HoTJuf7zPVrDA779I-LTXCrkTxhBx0uIp3u7jF7n9293TxkTy_3jzfXT1kjbZ6y1jQItra1wLKk0upaamvyvKwNtFqBbUVHBYIusGnLUmtooZOFtWgN5QjqmF1se1fBfw8UU_Xlh9CPLytpQIFSoNVIiS3VBB9joK5aBbfE8FMJqDarV5vVq83q1W71MXO-zTgi-seDlUYZ9Qd7PX7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803033063</pqid></control><display><type>article</type><title>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Bai ; Yang, Chao ; Dai, Jinkun ; Fan, Jianwei ; Qin, Yao ; Ye, Yuanxin</creator><creatorcontrib>Zhu, Bai ; Yang, Chao ; Dai, Jinkun ; Fan, Jianwei ; Qin, Yao ; Ye, Yuanxin</creatorcontrib><description>Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3264610</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autocorrelation ; Construction ; Detectors ; Feature extraction ; Indexes ; Invariants ; MALG ; Matching ; Measurement ; Methods ; Morlet wavelet ; Multimodal image matching ; Optical imaging ; Pipelines ; R&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2 FD&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2 ; Radiation ; Radiation tolerance ; Remote sensing ; Reproducibility ; Resistance ; RMLG ; Robustness ; Rotation ; Rotation-invariant Maximum Index Map (RMIM) ; Sensors</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</citedby><cites>FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</cites><orcidid>0000-0002-3251-2452 ; 0000-0002-3777-6334 ; 0000-0002-9793-1092 ; 0000-0001-6843-6722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10092838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10092838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Bai</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Dai, Jinkun</creatorcontrib><creatorcontrib>Fan, Jianwei</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ye, Yuanxin</creatorcontrib><title>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.</description><subject>Autocorrelation</subject><subject>Construction</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Indexes</subject><subject>Invariants</subject><subject>MALG</subject><subject>Matching</subject><subject>Measurement</subject><subject>Methods</subject><subject>Morlet wavelet</subject><subject>Multimodal image matching</subject><subject>Optical imaging</subject><subject>Pipelines</subject><subject>R&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2 FD&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Remote sensing</subject><subject>Reproducibility</subject><subject>Resistance</subject><subject>RMLG</subject><subject>Robustness</subject><subject>Rotation</subject><subject>Rotation-invariant Maximum Index Map (RMIM)</subject><subject>Sensors</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KxDAUhYMoOP48gOAi4LrjTdKmiTtRRwVFGHVdbttbjcw0Y5IO-BC-sx1mFq7ugfOdc-EwdiZgKgTYy7f7-etUglRTJXWuBeyxiSgKk4HO8302AWF1Jo2Vh-woxi8AkReinLDfuZzdyis-w5g49i2f-3oY5TOm5tP1H9x3_HlYJLf0LS74nJY-EX-lPm7MxyV-UORrh6OzIkxYL4jPRjEE4reUqEk-7HoTJuf7zPVrDA779I-LTXCrkTxhBx0uIp3u7jF7n9293TxkTy_3jzfXT1kjbZ6y1jQItra1wLKk0upaamvyvKwNtFqBbUVHBYIusGnLUmtooZOFtWgN5QjqmF1se1fBfw8UU_Xlh9CPLytpQIFSoNVIiS3VBB9joK5aBbfE8FMJqDarV5vVq83q1W71MXO-zTgi-seDlUYZ9Qd7PX7n</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhu, Bai</creator><creator>Yang, Chao</creator><creator>Dai, Jinkun</creator><creator>Fan, Jianwei</creator><creator>Qin, Yao</creator><creator>Ye, Yuanxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3251-2452</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-9793-1092</orcidid><orcidid>https://orcid.org/0000-0001-6843-6722</orcidid></search><sort><creationdate>20230101</creationdate><title>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</title><author>Zhu, Bai ; Yang, Chao ; Dai, Jinkun ; Fan, Jianwei ; Qin, Yao ; Ye, Yuanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d8ca09b9b1a77e796b2698447b80d6309d1fe5a065acd77660d0f2599a98e4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autocorrelation</topic><topic>Construction</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Indexes</topic><topic>Invariants</topic><topic>MALG</topic><topic>Matching</topic><topic>Measurement</topic><topic>Methods</topic><topic>Morlet wavelet</topic><topic>Multimodal image matching</topic><topic>Optical imaging</topic><topic>Pipelines</topic><topic>R&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2 FD&lt;sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;2</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Remote sensing</topic><topic>Reproducibility</topic><topic>Resistance</topic><topic>RMLG</topic><topic>Robustness</topic><topic>Rotation</topic><topic>Rotation-invariant Maximum Index Map (RMIM)</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Bai</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Dai, Jinkun</creatorcontrib><creatorcontrib>Fan, Jianwei</creatorcontrib><creatorcontrib>Qin, Yao</creatorcontrib><creatorcontrib>Ye, Yuanxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Bai</au><au>Yang, Chao</au><au>Dai, Jinkun</au><au>Fan, Jianwei</au><au>Qin, Yao</au><au>Ye, Yuanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R 2 FD 2 ) that is robust to radiation and rotation differences, which consists of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which includes fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to improve RMLG's resistance to radiation and rotation variances. Finally, we conduct experiments to validate the matching performance of our R 2 FD 2 utilizing different types of multimodal image datasets. Experimental results show that the proposed R 2 FD 2 outperforms five state-of-the-art feature matching methods. Moreover, our R 2 FD 2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over contrastive methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3264610</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3251-2452</orcidid><orcidid>https://orcid.org/0000-0002-3777-6334</orcidid><orcidid>https://orcid.org/0000-0002-9793-1092</orcidid><orcidid>https://orcid.org/0000-0001-6843-6722</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2023_3264610
source IEEE Electronic Library (IEL)
subjects Autocorrelation
Construction
Detectors
Feature extraction
Indexes
Invariants
MALG
Matching
Measurement
Methods
Morlet wavelet
Multimodal image matching
Optical imaging
Pipelines
R<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2 FD<sub xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">2
Radiation
Radiation tolerance
Remote sensing
Reproducibility
Resistance
RMLG
Robustness
Rotation
Rotation-invariant Maximum Index Map (RMIM)
Sensors
title R2FD2: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-invariant Feature Descriptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A33%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=R2FD2:%20Fast%20and%20Robust%20Matching%20of%20Multimodal%20Remote%20Sensing%20Images%20via%20Repeatable%20Feature%20Detector%20and%20Rotation-invariant%20Feature%20Descriptor&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhu,%20Bai&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3264610&rft_dat=%3Cproquest_RIE%3E2803033063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803033063&rft_id=info:pmid/&rft_ieee_id=10092838&rfr_iscdi=true