t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images
Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Deng, Yang-Jun Li, Heng-Chao Tan, Si-Qiao Hou, Junhui Du, Qian Plaza, Antonio |
description | Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL. |
doi_str_mv | 10.1109/TGRS.2023.3233945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3233945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005202</ieee_id><sourcerecordid>2763814114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</originalsourceid><addsrcrecordid>eNpNkF1LwzAUQIMoOKc_QPAh4HNnbpK26aOMfUFB2CY-hiS9HR1bW5MW9N_bsj34dOFw7r1wCHkGNgNg2dt-td3NOONiJrgQmYxvyATiWEUskfKWTBhkScRVxu_JQwhHxkDGkE7IVxflVY3G0z3WofF019vQGoc0H2Bd1QdaDnTb2D50dImm6z3SxU_njeuqpqZNSde_LfrQohvgiW7O5oDhkdyV5hTw6Tqn5HO52M_XUf6x2szf88jxTHaRBJVahcaVUBZFVgCkzjoJrkwGblKpwKRGFoCJtdYoawrJLUjhhFEKQUzJ6-Vu65vvHkOnj03v6-Gl5mkiFEgY7CmBi-V8E4LHUre-Ohv_q4HpsZ8e--mxn772G3ZeLjsVIv7zGYtH7w_J0m1u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763814114</pqid></control><display><type>article</type><title>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</title><source>IEEE Electronic Library (IEL)</source><creator>Deng, Yang-Jun ; Li, Heng-Chao ; Tan, Si-Qiao ; Hou, Junhui ; Du, Qian ; Plaza, Antonio</creator><creatorcontrib>Deng, Yang-Jun ; Li, Heng-Chao ; Tan, Si-Qiao ; Hou, Junhui ; Du, Qian ; Plaza, Antonio</creatorcontrib><description>Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3233945</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Corruption ; Data analysis ; Data models ; Feature extraction ; hyperspectral image ; Hyperspectral imaging ; Learning ; Linear transformations ; Mathematical analysis ; multilinear projection ; Noise reduction ; robust feature extraction ; Robustness ; Subspaces ; t-product ; Tensor subspace learning ; Tensors ; Vector spaces</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</citedby><cites>FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</cites><orcidid>0000-0002-9735-570X ; 0000-0001-9630-9632 ; 0000-0003-2532-1567 ; 0000-0003-3431-2021 ; 0000-0002-9613-1659 ; 0000-0001-8354-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10005202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, Yang-Jun</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Tan, Si-Qiao</creatorcontrib><creatorcontrib>Hou, Junhui</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.</description><subject>Corruption</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Learning</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>multilinear projection</subject><subject>Noise reduction</subject><subject>robust feature extraction</subject><subject>Robustness</subject><subject>Subspaces</subject><subject>t-product</subject><subject>Tensor subspace learning</subject><subject>Tensors</subject><subject>Vector spaces</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUQIMoOKc_QPAh4HNnbpK26aOMfUFB2CY-hiS9HR1bW5MW9N_bsj34dOFw7r1wCHkGNgNg2dt-td3NOONiJrgQmYxvyATiWEUskfKWTBhkScRVxu_JQwhHxkDGkE7IVxflVY3G0z3WofF019vQGoc0H2Bd1QdaDnTb2D50dImm6z3SxU_njeuqpqZNSde_LfrQohvgiW7O5oDhkdyV5hTw6Tqn5HO52M_XUf6x2szf88jxTHaRBJVahcaVUBZFVgCkzjoJrkwGblKpwKRGFoCJtdYoawrJLUjhhFEKQUzJ6-Vu65vvHkOnj03v6-Gl5mkiFEgY7CmBi-V8E4LHUre-Ohv_q4HpsZ8e--mxn772G3ZeLjsVIv7zGYtH7w_J0m1u</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Deng, Yang-Jun</creator><creator>Li, Heng-Chao</creator><creator>Tan, Si-Qiao</creator><creator>Hou, Junhui</creator><creator>Du, Qian</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-9630-9632</orcidid><orcidid>https://orcid.org/0000-0003-2532-1567</orcidid><orcidid>https://orcid.org/0000-0003-3431-2021</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></search><sort><creationdate>20230101</creationdate><title>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</title><author>Deng, Yang-Jun ; Li, Heng-Chao ; Tan, Si-Qiao ; Hou, Junhui ; Du, Qian ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Corruption</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Learning</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>multilinear projection</topic><topic>Noise reduction</topic><topic>robust feature extraction</topic><topic>Robustness</topic><topic>Subspaces</topic><topic>t-product</topic><topic>Tensor subspace learning</topic><topic>Tensors</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yang-Jun</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Tan, Si-Qiao</creatorcontrib><creatorcontrib>Hou, Junhui</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Yang-Jun</au><au>Li, Heng-Chao</au><au>Tan, Si-Qiao</au><au>Hou, Junhui</au><au>Du, Qian</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3233945</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-9630-9632</orcidid><orcidid>https://orcid.org/0000-0003-2532-1567</orcidid><orcidid>https://orcid.org/0000-0003-3431-2021</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2023_3233945 |
source | IEEE Electronic Library (IEL) |
subjects | Corruption Data analysis Data models Feature extraction hyperspectral image Hyperspectral imaging Learning Linear transformations Mathematical analysis multilinear projection Noise reduction robust feature extraction Robustness Subspaces t-product Tensor subspace learning Tensors Vector spaces |
title | t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=t-Linear%20Tensor%20Subspace%20Learning%20for%20Robust%20Feature%20Extraction%20of%20Hyperspectral%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Deng,%20Yang-Jun&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3233945&rft_dat=%3Cproquest_RIE%3E2763814114%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763814114&rft_id=info:pmid/&rft_ieee_id=10005202&rfr_iscdi=true |