t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images

Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Hauptverfasser: Deng, Yang-Jun, Li, Heng-Chao, Tan, Si-Qiao, Hou, Junhui, Du, Qian, Plaza, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Deng, Yang-Jun
Li, Heng-Chao
Tan, Si-Qiao
Hou, Junhui
Du, Qian
Plaza, Antonio
description Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.
doi_str_mv 10.1109/TGRS.2023.3233945
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3233945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005202</ieee_id><sourcerecordid>2763814114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</originalsourceid><addsrcrecordid>eNpNkF1LwzAUQIMoOKc_QPAh4HNnbpK26aOMfUFB2CY-hiS9HR1bW5MW9N_bsj34dOFw7r1wCHkGNgNg2dt-td3NOONiJrgQmYxvyATiWEUskfKWTBhkScRVxu_JQwhHxkDGkE7IVxflVY3G0z3WofF019vQGoc0H2Bd1QdaDnTb2D50dImm6z3SxU_njeuqpqZNSde_LfrQohvgiW7O5oDhkdyV5hTw6Tqn5HO52M_XUf6x2szf88jxTHaRBJVahcaVUBZFVgCkzjoJrkwGblKpwKRGFoCJtdYoawrJLUjhhFEKQUzJ6-Vu65vvHkOnj03v6-Gl5mkiFEgY7CmBi-V8E4LHUre-Ohv_q4HpsZ8e--mxn772G3ZeLjsVIv7zGYtH7w_J0m1u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763814114</pqid></control><display><type>article</type><title>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</title><source>IEEE Electronic Library (IEL)</source><creator>Deng, Yang-Jun ; Li, Heng-Chao ; Tan, Si-Qiao ; Hou, Junhui ; Du, Qian ; Plaza, Antonio</creator><creatorcontrib>Deng, Yang-Jun ; Li, Heng-Chao ; Tan, Si-Qiao ; Hou, Junhui ; Du, Qian ; Plaza, Antonio</creatorcontrib><description>Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3233945</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Corruption ; Data analysis ; Data models ; Feature extraction ; hyperspectral image ; Hyperspectral imaging ; Learning ; Linear transformations ; Mathematical analysis ; multilinear projection ; Noise reduction ; robust feature extraction ; Robustness ; Subspaces ; t-product ; Tensor subspace learning ; Tensors ; Vector spaces</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</citedby><cites>FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</cites><orcidid>0000-0002-9735-570X ; 0000-0001-9630-9632 ; 0000-0003-2532-1567 ; 0000-0003-3431-2021 ; 0000-0002-9613-1659 ; 0000-0001-8354-7500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10005202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, Yang-Jun</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Tan, Si-Qiao</creatorcontrib><creatorcontrib>Hou, Junhui</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><title>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.</description><subject>Corruption</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Learning</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>multilinear projection</subject><subject>Noise reduction</subject><subject>robust feature extraction</subject><subject>Robustness</subject><subject>Subspaces</subject><subject>t-product</subject><subject>Tensor subspace learning</subject><subject>Tensors</subject><subject>Vector spaces</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUQIMoOKc_QPAh4HNnbpK26aOMfUFB2CY-hiS9HR1bW5MW9N_bsj34dOFw7r1wCHkGNgNg2dt-td3NOONiJrgQmYxvyATiWEUskfKWTBhkScRVxu_JQwhHxkDGkE7IVxflVY3G0z3WofF019vQGoc0H2Bd1QdaDnTb2D50dImm6z3SxU_njeuqpqZNSde_LfrQohvgiW7O5oDhkdyV5hTw6Tqn5HO52M_XUf6x2szf88jxTHaRBJVahcaVUBZFVgCkzjoJrkwGblKpwKRGFoCJtdYoawrJLUjhhFEKQUzJ6-Vu65vvHkOnj03v6-Gl5mkiFEgY7CmBi-V8E4LHUre-Ohv_q4HpsZ8e--mxn772G3ZeLjsVIv7zGYtH7w_J0m1u</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Deng, Yang-Jun</creator><creator>Li, Heng-Chao</creator><creator>Tan, Si-Qiao</creator><creator>Hou, Junhui</creator><creator>Du, Qian</creator><creator>Plaza, Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-9630-9632</orcidid><orcidid>https://orcid.org/0000-0003-2532-1567</orcidid><orcidid>https://orcid.org/0000-0003-3431-2021</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></search><sort><creationdate>20230101</creationdate><title>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</title><author>Deng, Yang-Jun ; Li, Heng-Chao ; Tan, Si-Qiao ; Hou, Junhui ; Du, Qian ; Plaza, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4187b8eacf1fdd9d117cbc41cf67b8a7481a7a4d1e6bbba8bad42b143c3a88e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Corruption</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Learning</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>multilinear projection</topic><topic>Noise reduction</topic><topic>robust feature extraction</topic><topic>Robustness</topic><topic>Subspaces</topic><topic>t-product</topic><topic>Tensor subspace learning</topic><topic>Tensors</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yang-Jun</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><creatorcontrib>Tan, Si-Qiao</creatorcontrib><creatorcontrib>Hou, Junhui</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><creatorcontrib>Plaza, Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Yang-Jun</au><au>Li, Heng-Chao</au><au>Tan, Si-Qiao</au><au>Hou, Junhui</au><au>Du, Qian</au><au>Plaza, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Subspace learning has been widely applied for feature extraction of hyperspectral images (HSIs) and achieved great success. However, the current methods still leave two problems that need to be further investigated. Firstly, those methods mainly focus on finding one or multiple projection matrices for mapping the high-dimensional data into a low-dimensional subspace, which can only capture information from each direction of high-order hyperspectral data separately. Secondly, the feature extraction performance is barely satisfactory when HSI data is severely corrupted by noise. To address these issues, this paper presents a t-linear tensor subspace learning (tLTSL) model for robust feature extraction of HSIs based on t-product projection. In the model, t-product projection is a new defined tensor transformation way similar to linear transformation in vector space, which can maximally capture the intrinsic structure of tensor data. The integrated tensor low-rank and sparse decomposition can effectively remove the noise corruption and the learned t-product projection can directly transform the high-order HSI data into a subspace with information from all modes comprehensively considered. Moreover, a proposition related to tensor rank is proofed for interpreting the meaning of the tLTSL model. Extensive experiments are conducted on two different kinds of noise ( i.e ., simulated and real noise) corrupted HSI data, which validate the effectiveness of tLTSL.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3233945</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-9630-9632</orcidid><orcidid>https://orcid.org/0000-0003-2532-1567</orcidid><orcidid>https://orcid.org/0000-0003-3431-2021</orcidid><orcidid>https://orcid.org/0000-0002-9613-1659</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2023_3233945
source IEEE Electronic Library (IEL)
subjects Corruption
Data analysis
Data models
Feature extraction
hyperspectral image
Hyperspectral imaging
Learning
Linear transformations
Mathematical analysis
multilinear projection
Noise reduction
robust feature extraction
Robustness
Subspaces
t-product
Tensor subspace learning
Tensors
Vector spaces
title t-Linear Tensor Subspace Learning for Robust Feature Extraction of Hyperspectral Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=t-Linear%20Tensor%20Subspace%20Learning%20for%20Robust%20Feature%20Extraction%20of%20Hyperspectral%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Deng,%20Yang-Jun&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3233945&rft_dat=%3Cproquest_RIE%3E2763814114%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763814114&rft_id=info:pmid/&rft_ieee_id=10005202&rfr_iscdi=true