Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral Image Classification
Hyperspectral image (HSI) classification refers to accurately corresponding each pixel in an HSI to a land-cover label. Recently, the successful application of multiscale and multifeature methods has greatly improved the performance of HSI classification due to their enhanced utilization of the avai...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Sun, Le Fang, Yu Chen, Yuwen Huang, Wei Wu, Zebin Jeon, Byeungwoo |
description | Hyperspectral image (HSI) classification refers to accurately corresponding each pixel in an HSI to a land-cover label. Recently, the successful application of multiscale and multifeature methods has greatly improved the performance of HSI classification due to their enhanced utilization of the available spectral-spatial information. However, as the number of scales and the number of features increases, it becomes more difficult to achieve an optimal degree of fusion for multiple classifiers [e.g., kernel extreme learning machine (KELM)]. On the other hand, a limited sample size of the HSI may cause overfitting problems, which seriously affects the classification accuracy. Therefore, in this article, a novel multi-structure KELM with attention fusion strategy (MSAF-KELM) is proposed to achieve accurate fusion of multiple classifiers for effective HSI classification with ultrasmall sample rates. First, a multi-structure network is built, which combines multiple scales and multiple features to extract abundant spectral-spatial information. Second, a fast and efficient KELM is employed to enable rapid classification. Finally, a weighted self-attention fusion strategy (WSAFS) is introduced, which combines the output weights of each KELM subbranch and the self-attention mechanism to achieve an efficient fusion result on multi-structure networks. We conducted experiments on four types of HSI datasets with different evaluation methods and compared them with several classical and state-of-the-art methods, which demonstrate the excellent performance of our method on ultrasmall sample rates. The code is available at https://github.com/Fang666666/MSAF-KELM for reproducibility. |
doi_str_mv | 10.1109/TGRS.2022.3208165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2022_3208165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9895428</ieee_id><sourcerecordid>2721428417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7884c5df182026ee2cb77b057fdf40e386eb939256edadbb33abd326849f9e693</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N9ybHUmpbbBFsRfAS9mNSt2y7Ncke-u_dpcXTwPC87wwPQo-UjCgl5mUz-1iPGGFsxBnRVMkrNKBS6oQoIa7RgFCjEqYNu0V3IewIoULSdIC-V20dq2QdfVvE1gN-my5X-KuKP3gcIxxi1Rzwaxv60UFZhO0Ju8bj-ekIPhyh6JY1XuyzLeBJnYVQuarI-tg9unFZHeDhMofo83W6mcyT5ftsMRkvk4IZHpNUa1HI0lHdva8AWJGnaU5k6konCHCtIDfcMKmgzMo85zzLS86UFsYZUIYP0fO59-ib3xZCtLum9YfupGUpo4JpQdOOomeq8E0IHpw9-mqf-ZOlxPYKba_Q9grtRWGXeTpnKgD45402sivlf2UFba0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721428417</pqid></control><display><type>article</type><title>Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Le ; Fang, Yu ; Chen, Yuwen ; Huang, Wei ; Wu, Zebin ; Jeon, Byeungwoo</creator><creatorcontrib>Sun, Le ; Fang, Yu ; Chen, Yuwen ; Huang, Wei ; Wu, Zebin ; Jeon, Byeungwoo</creatorcontrib><description>Hyperspectral image (HSI) classification refers to accurately corresponding each pixel in an HSI to a land-cover label. Recently, the successful application of multiscale and multifeature methods has greatly improved the performance of HSI classification due to their enhanced utilization of the available spectral-spatial information. However, as the number of scales and the number of features increases, it becomes more difficult to achieve an optimal degree of fusion for multiple classifiers [e.g., kernel extreme learning machine (KELM)]. On the other hand, a limited sample size of the HSI may cause overfitting problems, which seriously affects the classification accuracy. Therefore, in this article, a novel multi-structure KELM with attention fusion strategy (MSAF-KELM) is proposed to achieve accurate fusion of multiple classifiers for effective HSI classification with ultrasmall sample rates. First, a multi-structure network is built, which combines multiple scales and multiple features to extract abundant spectral-spatial information. Second, a fast and efficient KELM is employed to enable rapid classification. Finally, a weighted self-attention fusion strategy (WSAFS) is introduced, which combines the output weights of each KELM subbranch and the self-attention mechanism to achieve an efficient fusion result on multi-structure networks. We conducted experiments on four types of HSI datasets with different evaluation methods and compared them with several classical and state-of-the-art methods, which demonstrate the excellent performance of our method on ultrasmall sample rates. The code is available at https://github.com/Fang666666/MSAF-KELM for reproducibility.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3208165</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Attention mechanisms ; Classification ; Classifiers ; Deep learning ; Electronic mail ; Extreme learning machines ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Information processing ; Kernel ; kernel extreme learning machine (KELM) ; Land cover ; Machine learning ; Methods ; multifeature ; multiscale (MS) ; Spatial data ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7884c5df182026ee2cb77b057fdf40e386eb939256edadbb33abd326849f9e693</citedby><cites>FETCH-LOGICAL-c293t-7884c5df182026ee2cb77b057fdf40e386eb939256edadbb33abd326849f9e693</cites><orcidid>0000-0002-7162-0202 ; 0000-0001-6465-8678 ; 0000-0002-5650-2881 ; 0000-0002-0095-1354 ; 0000-0003-3520-2780 ; 0000-0003-4032-5937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9895428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9895428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Fang, Yu</creatorcontrib><creatorcontrib>Chen, Yuwen</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wu, Zebin</creatorcontrib><creatorcontrib>Jeon, Byeungwoo</creatorcontrib><title>Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Hyperspectral image (HSI) classification refers to accurately corresponding each pixel in an HSI to a land-cover label. Recently, the successful application of multiscale and multifeature methods has greatly improved the performance of HSI classification due to their enhanced utilization of the available spectral-spatial information. However, as the number of scales and the number of features increases, it becomes more difficult to achieve an optimal degree of fusion for multiple classifiers [e.g., kernel extreme learning machine (KELM)]. On the other hand, a limited sample size of the HSI may cause overfitting problems, which seriously affects the classification accuracy. Therefore, in this article, a novel multi-structure KELM with attention fusion strategy (MSAF-KELM) is proposed to achieve accurate fusion of multiple classifiers for effective HSI classification with ultrasmall sample rates. First, a multi-structure network is built, which combines multiple scales and multiple features to extract abundant spectral-spatial information. Second, a fast and efficient KELM is employed to enable rapid classification. Finally, a weighted self-attention fusion strategy (WSAFS) is introduced, which combines the output weights of each KELM subbranch and the self-attention mechanism to achieve an efficient fusion result on multi-structure networks. We conducted experiments on four types of HSI datasets with different evaluation methods and compared them with several classical and state-of-the-art methods, which demonstrate the excellent performance of our method on ultrasmall sample rates. The code is available at https://github.com/Fang666666/MSAF-KELM for reproducibility.</description><subject>Artificial neural networks</subject><subject>Attention mechanisms</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Electronic mail</subject><subject>Extreme learning machines</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Information processing</subject><subject>Kernel</subject><subject>kernel extreme learning machine (KELM)</subject><subject>Land cover</subject><subject>Machine learning</subject><subject>Methods</subject><subject>multifeature</subject><subject>multiscale (MS)</subject><subject>Spatial data</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N9ybHUmpbbBFsRfAS9mNSt2y7Ncke-u_dpcXTwPC87wwPQo-UjCgl5mUz-1iPGGFsxBnRVMkrNKBS6oQoIa7RgFCjEqYNu0V3IewIoULSdIC-V20dq2QdfVvE1gN-my5X-KuKP3gcIxxi1Rzwaxv60UFZhO0Ju8bj-ekIPhyh6JY1XuyzLeBJnYVQuarI-tg9unFZHeDhMofo83W6mcyT5ftsMRkvk4IZHpNUa1HI0lHdva8AWJGnaU5k6konCHCtIDfcMKmgzMo85zzLS86UFsYZUIYP0fO59-ib3xZCtLum9YfupGUpo4JpQdOOomeq8E0IHpw9-mqf-ZOlxPYKba_Q9grtRWGXeTpnKgD45402sivlf2UFba0</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Le</creator><creator>Fang, Yu</creator><creator>Chen, Yuwen</creator><creator>Huang, Wei</creator><creator>Wu, Zebin</creator><creator>Jeon, Byeungwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7162-0202</orcidid><orcidid>https://orcid.org/0000-0001-6465-8678</orcidid><orcidid>https://orcid.org/0000-0002-5650-2881</orcidid><orcidid>https://orcid.org/0000-0002-0095-1354</orcidid><orcidid>https://orcid.org/0000-0003-3520-2780</orcidid><orcidid>https://orcid.org/0000-0003-4032-5937</orcidid></search><sort><creationdate>2022</creationdate><title>Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral Image Classification</title><author>Sun, Le ; Fang, Yu ; Chen, Yuwen ; Huang, Wei ; Wu, Zebin ; Jeon, Byeungwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7884c5df182026ee2cb77b057fdf40e386eb939256edadbb33abd326849f9e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Attention mechanisms</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Electronic mail</topic><topic>Extreme learning machines</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Information processing</topic><topic>Kernel</topic><topic>kernel extreme learning machine (KELM)</topic><topic>Land cover</topic><topic>Machine learning</topic><topic>Methods</topic><topic>multifeature</topic><topic>multiscale (MS)</topic><topic>Spatial data</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Fang, Yu</creatorcontrib><creatorcontrib>Chen, Yuwen</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Wu, Zebin</creatorcontrib><creatorcontrib>Jeon, Byeungwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Le</au><au>Fang, Yu</au><au>Chen, Yuwen</au><au>Huang, Wei</au><au>Wu, Zebin</au><au>Jeon, Byeungwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Hyperspectral image (HSI) classification refers to accurately corresponding each pixel in an HSI to a land-cover label. Recently, the successful application of multiscale and multifeature methods has greatly improved the performance of HSI classification due to their enhanced utilization of the available spectral-spatial information. However, as the number of scales and the number of features increases, it becomes more difficult to achieve an optimal degree of fusion for multiple classifiers [e.g., kernel extreme learning machine (KELM)]. On the other hand, a limited sample size of the HSI may cause overfitting problems, which seriously affects the classification accuracy. Therefore, in this article, a novel multi-structure KELM with attention fusion strategy (MSAF-KELM) is proposed to achieve accurate fusion of multiple classifiers for effective HSI classification with ultrasmall sample rates. First, a multi-structure network is built, which combines multiple scales and multiple features to extract abundant spectral-spatial information. Second, a fast and efficient KELM is employed to enable rapid classification. Finally, a weighted self-attention fusion strategy (WSAFS) is introduced, which combines the output weights of each KELM subbranch and the self-attention mechanism to achieve an efficient fusion result on multi-structure networks. We conducted experiments on four types of HSI datasets with different evaluation methods and compared them with several classical and state-of-the-art methods, which demonstrate the excellent performance of our method on ultrasmall sample rates. The code is available at https://github.com/Fang666666/MSAF-KELM for reproducibility.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3208165</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7162-0202</orcidid><orcidid>https://orcid.org/0000-0001-6465-8678</orcidid><orcidid>https://orcid.org/0000-0002-5650-2881</orcidid><orcidid>https://orcid.org/0000-0002-0095-1354</orcidid><orcidid>https://orcid.org/0000-0003-3520-2780</orcidid><orcidid>https://orcid.org/0000-0003-4032-5937</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2022_3208165 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Attention mechanisms Classification Classifiers Deep learning Electronic mail Extreme learning machines Feature extraction hyperspectral image (HSI) classification Hyperspectral imaging Image classification Information processing Kernel kernel extreme learning machine (KELM) Land cover Machine learning Methods multifeature multiscale (MS) Spatial data Training |
title | Multi-Structure KELM With Attention Fusion Strategy for Hyperspectral Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Structure%20KELM%20With%20Attention%20Fusion%20Strategy%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sun,%20Le&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3208165&rft_dat=%3Cproquest_RIE%3E2721428417%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721428417&rft_id=info:pmid/&rft_ieee_id=9895428&rfr_iscdi=true |