Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image
Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Han, Tianhao Niu, Sijie Gao, Xizhan Yu, Wenyue Cui, Na Dong, Jiwen |
description | Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background. |
doi_str_mv | 10.1109/TGRS.2022.3189633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2022_3189633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9825691</ieee_id><sourcerecordid>2691873177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExH9AcZNE9fFeXUeS1MVSDAmgOvJUO5gsXTqTKvh31uEuLqb75yc-yF0S_CIEKwfluP5YkQxpSNGlBaMnaEByTKVYsH5ORpgokVKlaaX6CrGLcaEZ0QO0OsTQJPM_E86t_VnMg62-UhyX3_7qmtLX9sqWXSr2NgCkrzqYguhrDeJ8yGZ7BsIsYGiDT013dkNXKMLZ6sIN6c7RO8vz8t8ks7extP8cZYWVLM2tRI7zgoipdLYOcZWnImCg1jbtabcCYqtFVI7LBRdARecOiH7P7FgVknJhuj-2NsE_9VBbM3Wd6EfGw0VmijJyB9FjlQRfIwBnGlCubNhbwg2B2vmYM0crJmTtT5zd8yUAPDPa0Wzvpf9AirLZ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691873177</pqid></control><display><type>article</type><title>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Tianhao ; Niu, Sijie ; Gao, Xizhan ; Yu, Wenyue ; Cui, Na ; Dong, Jiwen</creator><creatorcontrib>Han, Tianhao ; Niu, Sijie ; Gao, Xizhan ; Yu, Wenyue ; Cui, Na ; Dong, Jiwen</creatorcontrib><description>Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3189633</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; Background noise ; Classification ; Clustering ; Clustering methods ; Convolution ; Datasets ; Deep subspace clustering (DSC) ; Feature extraction ; graph convolutional networks (GCNs) ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image classification ; Land cover ; low-rank constrained self-expression ; Methods ; Noise measurement ; Sparse matrices ; Subspace methods ; Subspaces ; Symmetric matrices ; Task analysis ; unsupervised classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</citedby><cites>FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</cites><orcidid>0000-0001-5575-6786 ; 0000-0002-1401-9859 ; 0000-0002-8285-3781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9825691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9825691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Tianhao</creatorcontrib><creatorcontrib>Niu, Sijie</creatorcontrib><creatorcontrib>Gao, Xizhan</creatorcontrib><creatorcontrib>Yu, Wenyue</creatorcontrib><creatorcontrib>Cui, Na</creatorcontrib><creatorcontrib>Dong, Jiwen</creatorcontrib><title>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.</description><subject>Affinity</subject><subject>Background noise</subject><subject>Classification</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Deep subspace clustering (DSC)</subject><subject>Feature extraction</subject><subject>graph convolutional networks (GCNs)</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Land cover</subject><subject>low-rank constrained self-expression</subject><subject>Methods</subject><subject>Noise measurement</subject><subject>Sparse matrices</subject><subject>Subspace methods</subject><subject>Subspaces</subject><subject>Symmetric matrices</subject><subject>Task analysis</subject><subject>unsupervised classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwkAUhSdGExH9AcZNE9fFeXUeS1MVSDAmgOvJUO5gsXTqTKvh31uEuLqb75yc-yF0S_CIEKwfluP5YkQxpSNGlBaMnaEByTKVYsH5ORpgokVKlaaX6CrGLcaEZ0QO0OsTQJPM_E86t_VnMg62-UhyX3_7qmtLX9sqWXSr2NgCkrzqYguhrDeJ8yGZ7BsIsYGiDT013dkNXKMLZ6sIN6c7RO8vz8t8ks7extP8cZYWVLM2tRI7zgoipdLYOcZWnImCg1jbtabcCYqtFVI7LBRdARecOiH7P7FgVknJhuj-2NsE_9VBbM3Wd6EfGw0VmijJyB9FjlQRfIwBnGlCubNhbwg2B2vmYM0crJmTtT5zd8yUAPDPa0Wzvpf9AirLZ4g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Han, Tianhao</creator><creator>Niu, Sijie</creator><creator>Gao, Xizhan</creator><creator>Yu, Wenyue</creator><creator>Cui, Na</creator><creator>Dong, Jiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5575-6786</orcidid><orcidid>https://orcid.org/0000-0002-1401-9859</orcidid><orcidid>https://orcid.org/0000-0002-8285-3781</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</title><author>Han, Tianhao ; Niu, Sijie ; Gao, Xizhan ; Yu, Wenyue ; Cui, Na ; Dong, Jiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Background noise</topic><topic>Classification</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Deep subspace clustering (DSC)</topic><topic>Feature extraction</topic><topic>graph convolutional networks (GCNs)</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Land cover</topic><topic>low-rank constrained self-expression</topic><topic>Methods</topic><topic>Noise measurement</topic><topic>Sparse matrices</topic><topic>Subspace methods</topic><topic>Subspaces</topic><topic>Symmetric matrices</topic><topic>Task analysis</topic><topic>unsupervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Tianhao</creatorcontrib><creatorcontrib>Niu, Sijie</creatorcontrib><creatorcontrib>Gao, Xizhan</creatorcontrib><creatorcontrib>Yu, Wenyue</creatorcontrib><creatorcontrib>Cui, Na</creatorcontrib><creatorcontrib>Dong, Jiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Tianhao</au><au>Niu, Sijie</au><au>Gao, Xizhan</au><au>Yu, Wenyue</au><au>Cui, Na</au><au>Dong, Jiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3189633</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5575-6786</orcidid><orcidid>https://orcid.org/0000-0002-1401-9859</orcidid><orcidid>https://orcid.org/0000-0002-8285-3781</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2022_3189633 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity Background noise Classification Clustering Clustering methods Convolution Datasets Deep subspace clustering (DSC) Feature extraction graph convolutional networks (GCNs) hyperspectral image (HSI) Hyperspectral imaging Image classification Land cover low-rank constrained self-expression Methods Noise measurement Sparse matrices Subspace methods Subspaces Symmetric matrices Task analysis unsupervised classification |
title | Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Low-Rank%20Graph%20Convolutional%20Subspace%20Clustering%20for%20Hyperspectral%20Image&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Han,%20Tianhao&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3189633&rft_dat=%3Cproquest_RIE%3E2691873177%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691873177&rft_id=info:pmid/&rft_ieee_id=9825691&rfr_iscdi=true |