Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image

Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13
Hauptverfasser: Han, Tianhao, Niu, Sijie, Gao, Xizhan, Yu, Wenyue, Cui, Na, Dong, Jiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Han, Tianhao
Niu, Sijie
Gao, Xizhan
Yu, Wenyue
Cui, Na
Dong, Jiwen
description Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.
doi_str_mv 10.1109/TGRS.2022.3189633
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2022_3189633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9825691</ieee_id><sourcerecordid>2691873177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExH9AcZNE9fFeXUeS1MVSDAmgOvJUO5gsXTqTKvh31uEuLqb75yc-yF0S_CIEKwfluP5YkQxpSNGlBaMnaEByTKVYsH5ORpgokVKlaaX6CrGLcaEZ0QO0OsTQJPM_E86t_VnMg62-UhyX3_7qmtLX9sqWXSr2NgCkrzqYguhrDeJ8yGZ7BsIsYGiDT013dkNXKMLZ6sIN6c7RO8vz8t8ks7extP8cZYWVLM2tRI7zgoipdLYOcZWnImCg1jbtabcCYqtFVI7LBRdARecOiH7P7FgVknJhuj-2NsE_9VBbM3Wd6EfGw0VmijJyB9FjlQRfIwBnGlCubNhbwg2B2vmYM0crJmTtT5zd8yUAPDPa0Wzvpf9AirLZ4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691873177</pqid></control><display><type>article</type><title>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Tianhao ; Niu, Sijie ; Gao, Xizhan ; Yu, Wenyue ; Cui, Na ; Dong, Jiwen</creator><creatorcontrib>Han, Tianhao ; Niu, Sijie ; Gao, Xizhan ; Yu, Wenyue ; Cui, Na ; Dong, Jiwen</creatorcontrib><description>Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3189633</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; Background noise ; Classification ; Clustering ; Clustering methods ; Convolution ; Datasets ; Deep subspace clustering (DSC) ; Feature extraction ; graph convolutional networks (GCNs) ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image classification ; Land cover ; low-rank constrained self-expression ; Methods ; Noise measurement ; Sparse matrices ; Subspace methods ; Subspaces ; Symmetric matrices ; Task analysis ; unsupervised classification</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</citedby><cites>FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</cites><orcidid>0000-0001-5575-6786 ; 0000-0002-1401-9859 ; 0000-0002-8285-3781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9825691$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9825691$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Tianhao</creatorcontrib><creatorcontrib>Niu, Sijie</creatorcontrib><creatorcontrib>Gao, Xizhan</creatorcontrib><creatorcontrib>Yu, Wenyue</creatorcontrib><creatorcontrib>Cui, Na</creatorcontrib><creatorcontrib>Dong, Jiwen</creatorcontrib><title>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.</description><subject>Affinity</subject><subject>Background noise</subject><subject>Classification</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Deep subspace clustering (DSC)</subject><subject>Feature extraction</subject><subject>graph convolutional networks (GCNs)</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Land cover</subject><subject>low-rank constrained self-expression</subject><subject>Methods</subject><subject>Noise measurement</subject><subject>Sparse matrices</subject><subject>Subspace methods</subject><subject>Subspaces</subject><subject>Symmetric matrices</subject><subject>Task analysis</subject><subject>unsupervised classification</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwkAUhSdGExH9AcZNE9fFeXUeS1MVSDAmgOvJUO5gsXTqTKvh31uEuLqb75yc-yF0S_CIEKwfluP5YkQxpSNGlBaMnaEByTKVYsH5ORpgokVKlaaX6CrGLcaEZ0QO0OsTQJPM_E86t_VnMg62-UhyX3_7qmtLX9sqWXSr2NgCkrzqYguhrDeJ8yGZ7BsIsYGiDT013dkNXKMLZ6sIN6c7RO8vz8t8ks7extP8cZYWVLM2tRI7zgoipdLYOcZWnImCg1jbtabcCYqtFVI7LBRdARecOiH7P7FgVknJhuj-2NsE_9VBbM3Wd6EfGw0VmijJyB9FjlQRfIwBnGlCubNhbwg2B2vmYM0crJmTtT5zd8yUAPDPa0Wzvpf9AirLZ4g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Han, Tianhao</creator><creator>Niu, Sijie</creator><creator>Gao, Xizhan</creator><creator>Yu, Wenyue</creator><creator>Cui, Na</creator><creator>Dong, Jiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5575-6786</orcidid><orcidid>https://orcid.org/0000-0002-1401-9859</orcidid><orcidid>https://orcid.org/0000-0002-8285-3781</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</title><author>Han, Tianhao ; Niu, Sijie ; Gao, Xizhan ; Yu, Wenyue ; Cui, Na ; Dong, Jiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a70f43c177890ff33b436c4e6dad924f620aa679f0682be4642f67110063a8773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Background noise</topic><topic>Classification</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Deep subspace clustering (DSC)</topic><topic>Feature extraction</topic><topic>graph convolutional networks (GCNs)</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Land cover</topic><topic>low-rank constrained self-expression</topic><topic>Methods</topic><topic>Noise measurement</topic><topic>Sparse matrices</topic><topic>Subspace methods</topic><topic>Subspaces</topic><topic>Symmetric matrices</topic><topic>Task analysis</topic><topic>unsupervised classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Tianhao</creatorcontrib><creatorcontrib>Niu, Sijie</creatorcontrib><creatorcontrib>Gao, Xizhan</creatorcontrib><creatorcontrib>Yu, Wenyue</creatorcontrib><creatorcontrib>Cui, Na</creatorcontrib><creatorcontrib>Dong, Jiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Tianhao</au><au>Niu, Sijie</au><au>Gao, Xizhan</au><au>Yu, Wenyue</au><au>Cui, Na</au><au>Dong, Jiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Deep subspace clustering (DSC) has achieved considerable success in the classification task of hyperspectral images (HSIs) without background (defined as noisy samples) compared with traditional subspace clustering methods. Unfortunately, directly applying DSC to classify land-cover on HSI datasets with background may suffer from the degradation of classification performance. In this article, we propose an effective deep low-rank graph convolutional subspace clustering (DLR-GCSC) framework for improving the performance of land-cover classification on HSI datasets with background. Specifically, we design a joint spatial-spectral network to extract band- and patch-level features simultaneously by combining 1-D and 2-D autoencoders. Moreover, we construct a low-rank constrained fully connected layer as a self-expression layer in the network to make the joint features more discriminative. To reduce the influence of noisy samples and obtain an informative affinity matrix, we recast the joint features into a non-Euclidean domain by introducing graph convolution. Finally, spectral clustering is applied to the informative affinity matrix to obtain the classification results. Experiments on three benchmark HSI datasets show that our proposed method achieves competitive classification performance to the state-of-the-art methods on both HSI data with background and without background.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3189633</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5575-6786</orcidid><orcidid>https://orcid.org/0000-0002-1401-9859</orcidid><orcidid>https://orcid.org/0000-0002-8285-3781</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2022_3189633
source IEEE Electronic Library (IEL)
subjects Affinity
Background noise
Classification
Clustering
Clustering methods
Convolution
Datasets
Deep subspace clustering (DSC)
Feature extraction
graph convolutional networks (GCNs)
hyperspectral image (HSI)
Hyperspectral imaging
Image classification
Land cover
low-rank constrained self-expression
Methods
Noise measurement
Sparse matrices
Subspace methods
Subspaces
Symmetric matrices
Task analysis
unsupervised classification
title Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Low-Rank%20Graph%20Convolutional%20Subspace%20Clustering%20for%20Hyperspectral%20Image&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Han,%20Tianhao&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3189633&rft_dat=%3Cproquest_RIE%3E2691873177%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691873177&rft_id=info:pmid/&rft_ieee_id=9825691&rfr_iscdi=true