A Novel Approach for Multiscale Lunar Crater Detection by the Use of Path-Profile and Isolation Forest Based on High-Resolution Planetary Images

Crater detection from planetary images is a challenging issue due to the complicated variations in geometry shape, illumination, and scale. An automatic crater detection algorithm (CDA) that is robust to these factors is, therefore, necessary. In this article, a novel automatic CDA that is robust to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-24
Hauptverfasser: Wang, Yaqiong, Xie, Huan, Huang, Qian, Feng, Yaxuan, Yan, Xiongfeng, Tong, Xiaohua, Liu, Shijie, Liu, Sicong, Xu, Xiong, Wang, Chao, Jin, Yanmin, Zhang, Xinyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crater detection from planetary images is a challenging issue due to the complicated variations in geometry shape, illumination, and scale. An automatic crater detection algorithm (CDA) that is robust to these factors is, therefore, necessary. In this article, a novel automatic CDA that is robust to these factors is proposed to detect the multiscale craters of the Moon. The proposed method consists of two main steps: 1) in the hypothesis generation (HG) step, a novel feature operator called the path-profile, which is constructed based on the self-defined adjacency graph and a path descriptor, is presented to derive the highlight-shadow feature of craters for detecting candidate craters. 2) In the hypothesis verification (HV) step, based on the idea of anomaly detection, the isolation forest algorithm which is an unsupervised learning anomaly detection method is applied to eliminate falsely detected craters. Lunar Reconnaissance Orbiter Camera Wide Angle Camera and Narrow Angle Camera images and Chang'E-4 landing camera images were used to test the accuracy and robustness of the proposed method. The experimental results indicate that: on average, the accuracy of the detection result of the HG step is about 90%, and the HV step can further improve this by 3%-4%. The proposed method is a reliable way to detect multiscale lunar craters for various resolutions images with diameters ranging from five pixels to hundreds of pixels, and it is robust to the different terrains and illumination conditions on the Moon.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2022.3153721