Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection

With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12
Hauptverfasser: Guo, Qingle, Zhang, Junping, Zhu, Shengyu, Zhong, Chongxiao, Zhang, Ye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Guo, Qingle
Zhang, Junping
Zhu, Shengyu
Zhong, Chongxiao
Zhang, Ye
description With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.
doi_str_mv 10.1109/TGRS.2021.3131993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3131993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9632564</ieee_id><sourcerecordid>2631959973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjtO4mOVQkEqPyJFHCM32dAUNym2A-LtSdSK00q7M6PZj5BLYBMApm6W89dswhmHiQABSokjMgIpk4BFYXhMRgxUFPBE8VNy5tyGMQglxCOynSHu6GNnfO0KbZBmtd6iQ_qE_qe1n_S99mv6oq02Bg1N2-a7NZ2v20YbmnnbFb6zSHVT0gxNFUy9x2Y406q1NF3r5gPpDD0Ww_KcnFTaOLw4zDF5u7tdpvfB4nn-kE4XQcGV8AFWUuqSlSyOQ5QCEiGT_ikeYoIaeaL7-rCKCiV5zBkWKwBdMKhwpaJIl0KMyfU-d2fbrw6dzzdtZ_vKLudRnySVigcV7FWFbZ2zWOU7W2-1_c2B5QPVfKCaD1TzA9Xec7X31Ij4r1eR4DIKxR_y33Ql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959973</pqid></control><display><type>article</type><title>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Qingle ; Zhang, Junping ; Zhu, Shengyu ; Zhong, Chongxiao ; Zhang, Ye</creator><creatorcontrib>Guo, Qingle ; Zhang, Junping ; Zhu, Shengyu ; Zhong, Chongxiao ; Zhang, Ye</creatorcontrib><description>With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3131993</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Change detection ; Change detection (CD) ; Computational modeling ; Computer applications ; Computer architecture ; Deep learning ; deep multiscale Siamese network ; Detection ; Feature extraction ; Image enhancement ; Image segmentation ; Integration ; Machine learning ; Methods ; parallel convolutional structure (PCS) ; Remote sensing ; self-attention (SA) ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</citedby><cites>FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</cites><orcidid>0000-0002-1082-114X ; 0000-0002-3448-5320 ; 0000-0001-8721-4535 ; 0000-0002-4028-5579 ; 0000-0001-5704-1338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9632564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9632564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Qingle</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Zhu, Shengyu</creatorcontrib><creatorcontrib>Zhong, Chongxiao</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><title>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.</description><subject>Artificial neural networks</subject><subject>Change detection</subject><subject>Change detection (CD)</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>deep multiscale Siamese network</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Integration</subject><subject>Machine learning</subject><subject>Methods</subject><subject>parallel convolutional structure (PCS)</subject><subject>Remote sensing</subject><subject>self-attention (SA)</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjtO4mOVQkEqPyJFHCM32dAUNym2A-LtSdSK00q7M6PZj5BLYBMApm6W89dswhmHiQABSokjMgIpk4BFYXhMRgxUFPBE8VNy5tyGMQglxCOynSHu6GNnfO0KbZBmtd6iQ_qE_qe1n_S99mv6oq02Bg1N2-a7NZ2v20YbmnnbFb6zSHVT0gxNFUy9x2Y406q1NF3r5gPpDD0Ww_KcnFTaOLw4zDF5u7tdpvfB4nn-kE4XQcGV8AFWUuqSlSyOQ5QCEiGT_ikeYoIaeaL7-rCKCiV5zBkWKwBdMKhwpaJIl0KMyfU-d2fbrw6dzzdtZ_vKLudRnySVigcV7FWFbZ2zWOU7W2-1_c2B5QPVfKCaD1TzA9Xec7X31Ij4r1eR4DIKxR_y33Ql</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guo, Qingle</creator><creator>Zhang, Junping</creator><creator>Zhu, Shengyu</creator><creator>Zhong, Chongxiao</creator><creator>Zhang, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0002-3448-5320</orcidid><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-4028-5579</orcidid><orcidid>https://orcid.org/0000-0001-5704-1338</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</title><author>Guo, Qingle ; Zhang, Junping ; Zhu, Shengyu ; Zhong, Chongxiao ; Zhang, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Change detection</topic><topic>Change detection (CD)</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>deep multiscale Siamese network</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Integration</topic><topic>Machine learning</topic><topic>Methods</topic><topic>parallel convolutional structure (PCS)</topic><topic>Remote sensing</topic><topic>self-attention (SA)</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qingle</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Zhu, Shengyu</creatorcontrib><creatorcontrib>Zhong, Chongxiao</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Qingle</au><au>Zhang, Junping</au><au>Zhu, Shengyu</au><au>Zhong, Chongxiao</au><au>Zhang, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3131993</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0002-3448-5320</orcidid><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-4028-5579</orcidid><orcidid>https://orcid.org/0000-0001-5704-1338</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3131993
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Change detection
Change detection (CD)
Computational modeling
Computer applications
Computer architecture
Deep learning
deep multiscale Siamese network
Detection
Feature extraction
Image enhancement
Image segmentation
Integration
Machine learning
Methods
parallel convolutional structure (PCS)
Remote sensing
self-attention (SA)
Semantics
Task analysis
Training
title Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multiscale%20Siamese%20Network%20With%20Parallel%20Convolutional%20Structure%20and%20Self-Attention%20for%20Change%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Guo,%20Qingle&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3131993&rft_dat=%3Cproquest_RIE%3E2631959973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631959973&rft_id=info:pmid/&rft_ieee_id=9632564&rfr_iscdi=true