Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection
With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effecti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Guo, Qingle Zhang, Junping Zhu, Shengyu Zhong, Chongxiao Zhang, Ye |
description | With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes. |
doi_str_mv | 10.1109/TGRS.2021.3131993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3131993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9632564</ieee_id><sourcerecordid>2631959973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjtO4mOVQkEqPyJFHCM32dAUNym2A-LtSdSK00q7M6PZj5BLYBMApm6W89dswhmHiQABSokjMgIpk4BFYXhMRgxUFPBE8VNy5tyGMQglxCOynSHu6GNnfO0KbZBmtd6iQ_qE_qe1n_S99mv6oq02Bg1N2-a7NZ2v20YbmnnbFb6zSHVT0gxNFUy9x2Y406q1NF3r5gPpDD0Ww_KcnFTaOLw4zDF5u7tdpvfB4nn-kE4XQcGV8AFWUuqSlSyOQ5QCEiGT_ikeYoIaeaL7-rCKCiV5zBkWKwBdMKhwpaJIl0KMyfU-d2fbrw6dzzdtZ_vKLudRnySVigcV7FWFbZ2zWOU7W2-1_c2B5QPVfKCaD1TzA9Xec7X31Ij4r1eR4DIKxR_y33Ql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959973</pqid></control><display><type>article</type><title>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Qingle ; Zhang, Junping ; Zhu, Shengyu ; Zhong, Chongxiao ; Zhang, Ye</creator><creatorcontrib>Guo, Qingle ; Zhang, Junping ; Zhu, Shengyu ; Zhong, Chongxiao ; Zhang, Ye</creatorcontrib><description>With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3131993</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Change detection ; Change detection (CD) ; Computational modeling ; Computer applications ; Computer architecture ; Deep learning ; deep multiscale Siamese network ; Detection ; Feature extraction ; Image enhancement ; Image segmentation ; Integration ; Machine learning ; Methods ; parallel convolutional structure (PCS) ; Remote sensing ; self-attention (SA) ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</citedby><cites>FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</cites><orcidid>0000-0002-1082-114X ; 0000-0002-3448-5320 ; 0000-0001-8721-4535 ; 0000-0002-4028-5579 ; 0000-0001-5704-1338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9632564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9632564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Qingle</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Zhu, Shengyu</creatorcontrib><creatorcontrib>Zhong, Chongxiao</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><title>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.</description><subject>Artificial neural networks</subject><subject>Change detection</subject><subject>Change detection (CD)</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>deep multiscale Siamese network</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Integration</subject><subject>Machine learning</subject><subject>Methods</subject><subject>parallel convolutional structure (PCS)</subject><subject>Remote sensing</subject><subject>self-attention (SA)</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAIiLJc4pXjtO4mOVQkEqPyJFHCM32dAUNym2A-LtSdSK00q7M6PZj5BLYBMApm6W89dswhmHiQABSokjMgIpk4BFYXhMRgxUFPBE8VNy5tyGMQglxCOynSHu6GNnfO0KbZBmtd6iQ_qE_qe1n_S99mv6oq02Bg1N2-a7NZ2v20YbmnnbFb6zSHVT0gxNFUy9x2Y406q1NF3r5gPpDD0Ww_KcnFTaOLw4zDF5u7tdpvfB4nn-kE4XQcGV8AFWUuqSlSyOQ5QCEiGT_ikeYoIaeaL7-rCKCiV5zBkWKwBdMKhwpaJIl0KMyfU-d2fbrw6dzzdtZ_vKLudRnySVigcV7FWFbZ2zWOU7W2-1_c2B5QPVfKCaD1TzA9Xec7X31Ij4r1eR4DIKxR_y33Ql</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Guo, Qingle</creator><creator>Zhang, Junping</creator><creator>Zhu, Shengyu</creator><creator>Zhong, Chongxiao</creator><creator>Zhang, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0002-3448-5320</orcidid><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-4028-5579</orcidid><orcidid>https://orcid.org/0000-0001-5704-1338</orcidid></search><sort><creationdate>2022</creationdate><title>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</title><author>Guo, Qingle ; Zhang, Junping ; Zhu, Shengyu ; Zhong, Chongxiao ; Zhang, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ef55ad0d0774e531835831924e8eae28a0011b6c952720ecb11ac01feb966ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Change detection</topic><topic>Change detection (CD)</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>deep multiscale Siamese network</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Integration</topic><topic>Machine learning</topic><topic>Methods</topic><topic>parallel convolutional structure (PCS)</topic><topic>Remote sensing</topic><topic>self-attention (SA)</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qingle</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Zhu, Shengyu</creatorcontrib><creatorcontrib>Zhong, Chongxiao</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Qingle</au><au>Zhang, Junping</au><au>Zhu, Shengyu</au><au>Zhong, Chongxiao</au><au>Zhang, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>With the wide application of deep learning (DL), change detection (CD) for remote-sensing images (RSIs) has realized the leap from the traditional to the intelligent methods. However, many existing methods still need further improvement in practical applications, especially in increasing the effectiveness of feature extraction and reducing the model computational cost. In this article, we propose a novel deep multiscale Siamese network with parallel convolutional structure (PCS) and self-attention (SA) (MSPSNet), which has excellent capabilities of feature extraction and feature integration under an acceptable consumption. It mainly contains three subnetworks: deep multiscale feature extraction, feature integration by the PCS, and feature refinement based on the SA. In the first subnetwork, a deep multiscale Siamese network based on convolutional block is designed to depict the image features at different scales for different temporal images. In the subsequent subnetworks, a PCS model is proposed to integrate multiscale features of different temporal images, and then, an SA model is constructed to further enhance the representation of image information. Experiments are conducted on two public RSI datasets, indicating that the proposed framework performs well in detecting changes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3131993</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0002-3448-5320</orcidid><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-4028-5579</orcidid><orcidid>https://orcid.org/0000-0001-5704-1338</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3131993 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Change detection Change detection (CD) Computational modeling Computer applications Computer architecture Deep learning deep multiscale Siamese network Detection Feature extraction Image enhancement Image segmentation Integration Machine learning Methods parallel convolutional structure (PCS) Remote sensing self-attention (SA) Semantics Task analysis Training |
title | Deep Multiscale Siamese Network With Parallel Convolutional Structure and Self-Attention for Change Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multiscale%20Siamese%20Network%20With%20Parallel%20Convolutional%20Structure%20and%20Self-Attention%20for%20Change%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Guo,%20Qingle&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3131993&rft_dat=%3Cproquest_RIE%3E2631959973%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631959973&rft_id=info:pmid/&rft_ieee_id=9632564&rfr_iscdi=true |